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a b s t r a c t

Singular enrichment functions are broadly used in Generalized or Extended Finite Element
Methods (GFEM/XFEM) for linear elastic fracture mechanics problems. These functions
are used at finite element nodes within an enrichment zone around the crack tip/front in
2- and 3-D problems, respectively. Small zones lead to suboptimal convergence rate of the
method while large ones lead to ill-conditioning of the system of equations and to a large
number of degrees of freedom. This paper presents an a priori estimate for the minimum
size of the enrichment zone required for optimal convergence rate of the GFEM/XFEM. The
estimate shows that the minimum size of the enrichment zone for optimal convergence
rate depends on the element size and polynomial order of the GFEM/XFEM shape functions.
Detailed numerical verification of these findings is also presented.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of Partition of Unity methods [1,2], like the hp-cloud method [3,2,4], the Generalized or Extended Finite
Element Method (GFEM/XFEM) [5,6,1,7–9], and the Particle Partition of Unity Method [10,11], has greatly facilitated
the computation of accurate and efficient numerical solutions for problems with singularities. Of particular engineering
relevance are linear elastic fracture mechanics problems with stationary or propagating cracks. The rapid growth and
development of the GFEM/XFEM in the last two decades has led to a phenomenal increase in the number of users of these
methods and its availability inmainstream commercial finite element software like Abaqus [12] and LS-DYNA [13]. Themain
idea behind the GFEM/XFEM is to incorporate a priori knowledge about the solution of a problem into the finite element
solution space using the partition of unity property of finite element shape functions. It is to be noted that GFEM and XFEM
are essentially the same methods, as discussed in [14]. The names GFEM and XFEM are used interchangeably in this paper.

Several researchers have exploited the robustness and flexibility associated with the GFEM/XFEM to solve elasticity
problems involving cracks [15–20]. This method relaxes meshing constraints imposed by the standard Finite Element
Method (FEM) for modeling cracks or moving interfaces. In addition, it improves the numerical accuracy while retaining
the attractive features of the FEM. In problems involving cracks, the singularity is resolved poorly by the polynomial shape
functions used in the FEM, unless a highly-refined mesh is used close to the crack tip. The GFEM alleviates this problem
by building a solution space containing a priori knowledge about the elasticity solution in the neighborhood of cracks.
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Fig. 1. Linear elastic boundary value problem with a crack in 2-D.

The GFEM can handle discontinuities and singularities independently of the finite element mesh by proper selection of
local approximation spaces in pre-selected regions of the problem domain. This is accomplished through the so-called
enrichment functions. For problems involving cracks, two types of enrichment functions are typically adopted [21,19,22]:
(i) Heaviside functions able to represent the discontinuity of the elasticity solution across the crack surface and (ii)
Westergaard asymptotic singular displacement fields, which approximate the singularity and discontinuity of the elasticity
solution near the crack tip.

Most GFEM formulations for fractures [15,21,19] have adopted singular enrichment functions only at the nodes of
elements containing the crack tip in 2-D or intersected by the crack front in 3-D. This enrichment strategy, referred to
as topological enrichment [23,24], leads to the same suboptimal convergence behavior as the standard FEM on quasi-
uniform meshes. Laborde et al. [23] and Béchet et al. [24] proposed the idea of enriching finite element nodes in a fixed
neighborhood around the crack tip/front. This so-called geometrical enrichment strategy leads to optimal convergence rate,
as in problems with smooth solutions, provided proper singular enrichment functions are adopted [25]. A brief overview
of these enrichment strategies is presented in Section 4. Other researchers [26,27] have also numerically demonstrated the
need for geometrical enrichment around the crack tip/front in order to obtain optimal convergence rate.

The geometrical enrichment zone with singular enrichment functions can be chosen arbitrarily large. However, large
enrichment zones lead to ill-conditioned stiffnessmatrices as shown in [28,29] and to a larger number of degrees of freedom
than the topological enrichment strategy. Therefore, estimates of the minimum size of the enrichment zone required for
optimal convergence rate of the GFEM are needed. To the authors’ knowledge, no guidelines for the selection of enrichment
zone sizes in the GFEM/XFEM are available in the literature. This paper presents an a priori estimate for the minimum size
of the enrichment zone. The estimate shows that the minimum size depends on the element size and polynomial order of
the GFEM shape functions. Numerical verification of these findings is also presented.

After this introduction, Section 2 describes the linear elastic fracture mechanics problem considered in this study,
followed by a brief review of the Generalized Finite Element Method (GFEM) in Section 3. Section 4 reviews enrichment
strategies commonly adopted in the neighborhood of a crack tip. Section 4.3 presents an a priori estimate of the minimum
size of the enrichment zone for linear elastic fracturemechanics problems. Numerical experiments aimed at the verification
of the proposed estimate are presented in Section 5. Finally, Section 6 summarizes the main results and conclusions of this
study.

2. Model problem definition

Consider a cracked domain, Ω̄ = Ω ∪ ∂Ω in R2, like the one shown in Fig. 1.
The equilibrium and constitutive equations are given by

∇ · σ = 0 σ = C : ε in Ω (1)

where C is Hooke’s tensor, σ denotes the Cauchy stress tensor, and ε is the small strain tensor. The following boundary
conditions are prescribed on ∂Ω

σ · n = t̄ on ∂Ω (2)

where n is the outward unit normal vector to ∂Ω and t̄ are prescribed tractions. The crack surface is assumed to be traction-
free, i.e., t̄ = 0 on the crack surface. Eqs. (1) and (2) are the strong form of governing equations.

The weak formulation of the problem above is given by the Principle of Virtual Work, which reads
Find u ∈ E (Ω), such that ∀ v ∈ E (Ω)

B(u, v) = F(v) (3)
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