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Abstract

A new algorithm is proposed for determining the saturation condition of a multi-component solution with respect to a ther-
modynamic system of phases that are in exchange equilibrium. The procedure is simple to implement, analytic in construction,
and guaranteed to converge. The algorithm finds application in the computational thermodynamics of equilibrium phase rela-
tions in multi-component systems and provides a means of discriminating computed assemblages that are potentially metasta-
ble from those that are globally stable. The algorithm can be applied to any chemical system of arbitrary complexity.
� 2012 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

There are many challenges associated with performing
computational thermodynamics in systems with multi-com-
ponent solution phases, but perhaps the most daunting is
identification of the potential phases and their compositions
in the equilibrium assemblage. By contrast, in systems com-
prising a collection of pure phases, this exercise is straight-
forward and the resulting equilibrium assemblage is
uniquely defined; most computational procedures for sin-
gle-component phase collections start with the unlikely
assumption that all possible phases are present in the sys-
tem, and optimize this initial guess using linear program-
ming (e.g., simplex method) to achieve a minimal energy
solution (Smith and Missen, 1982). Importantly, in such a
procedure the numerical algorithm retains compositional
information about the universe of possible phases at each
numerical step in the evolution to the minimum, with opti-
mality prescribed by the molar abundance (which may be
zero) of each phase in the final assemblage. If the phases
in the equilibrium system are solutions of varying composi-
tion however, a complication emerges: In the course of

energy minimization a particular solution phase may disap-
pear from the assemblage, indicated by the molar abun-
dance of all of its components tending towards zero; in
subsequent numerical steps to the energy minimum, as fur-
ther phases are discarded and compositions of remaining
phases are adjusted, the earlier discarded phase may reenter
the assemblage to become a member of the final equilibrium
configuration of phases. In this scenario, the complication
is how to determine the stability of any discarded solution
phase so that it may be evaluated for reintroduction into
the assemblage? This procedure is not trivial because, un-
like the single component case, simply adding a tiny
amount of the phase to the assemblage and noting the
direction of change of total energy does not apply, given
that the solution phase composition is not known a priori.
Randomly selecting a composition to evaluate potential
solution phase inclusion simply does not work because
most such random guesses will be metastable, and Monte
Carlo-like evaluation of potential compositions is too
time-consuming for phases with four or more components.
The answer to this dilemma is an algorithmic procedure
that correctly determines the relative stability of a given
phase vis-a-vis a collection of (meta)stable phases. In gen-
eral, such procedures are referred to as saturation state
algorithms because they are derived historically from
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methods utilized in determining the relative saturation con-
dition of solid phases in potential association with aqueous
solution (Helgeson et al., 1970; Reed, 1982).

Most saturation state algorithms take advantage of the
presence of a (meta)stable phase that contains all of the
thermodynamic components in the system. An aqueous
fluid or a magmatic liquid are excellent examples of such
phases. We denote these omni-component phases, using
the Latin prefix omni, meaning everything. Strictly speak-
ing, all phases are omni-component phases, but in practical
computations compositions of solutions are restricted by
available thermodynamic data and solution models. Impor-
tantly, as will be demonstrated below, an omni-component
phase can always be defined for a collection of arbitrary
phases in exchange equilibrium (metastable or stable), so
algorithms that rely on the existence of an omni-component
phase for determining saturation state conditions are uni-
versally applicable.

In this paper, a new algorithm is presented for determi-
nation of the saturation state of a phase relative to an omni-
component phase. While many such algorithms have been
proposed (e.g., Reed, 1982; Ghiorso, 1994) and utilized in
practice (Ghiorso and Sack, 1995; Ghiorso et al., 2002;
Tirone et al., 2009), the algorithm developed below is
unique in that it does not rely on the solution of non-linear
systems of equations, a numerical procedure which may be
time-consuming or yield locally minimal (i.e. potentially
incorrect) solutions. Nor does the algorithm proposed be-
low require an initial numerical guess. Both of these fea-
tures are advantages in that together they foster
achievement of a solution that is globally convergent. The
paper begins with a statement of the new algorithm, then
applies the algorithm to thermodynamic systems with a
stable or metastable omni-component phase, and finally
addresses the issue of algorithm convergence and other
practical matters of implementation.

2. SATURATION STATE ALGORITHM –

DESCRIPTION

Consider an omni-component (oc) phase with n ther-
modynamic components. We pose the problem: What is
the saturation state of a target-phase relative to a specified
composition of the oc-phase at some given temperature
(T) and pressure (P). The problem is illustrated in Fig. 1
for a model two component system. Composition is de-
noted on the abscissa as mole fraction (X) of the second
component in solution, and the molar Gibbs free energy
(G) is plotted on the ordinate. The specified composition
of the oc-phase is labeled “L.” The dashed line is tangent
to the Gibbs energy curve at “L,” and for the illustrated
cases, this tangent line projects to lower Gibbs free ener-
gies than those of the target-phase. Consequently, the tar-
get-phase is undersaturated relative to the chosen
composition of the oc-phase. In quantitative terms, the de-
gree of undersaturation is given by the chemical affinity
(A), which is the minimal energy difference between the
projected tangent line from the oc-phase and the Gibbs
free energy curve of the target-phase for some composition
where the slopes of both energy curves are identical.

Determining the saturation state of a target-phase is there-
fore an exercise in finding the target-phase composition
that satisfies these geometrical requirements in energy-
composition space. Although Fig. 1 illustrates this geo-
metrical construction for a two-component case, the situ-
ation readily generalizes to Gibbs free energy surfaces
with tangent hyperplanes and gradient vectors for arbi-
trary numbers of components.

The geometrical condition of the previous paragraph is
embodied in the set of thermodynamic equations

li;oc-phase ¼ Aþ li;target-phase ð1Þ

for all c components of the target-phase, where l denotes
the chemical potential, which is indexed on i, and 1 6 i 6 c,
c 6 n. For simplicity and without loss of generality both
phases are described with the same component stoichiome-
try; in practice a mapping may be required to balance stoi-
chiometric differences between difference sets of
components adopted for each phase. Alternately, the meth-
od of Lagrange multipliers may be utilized to construct the
left-hand-side of (1), as described below in Section 3. Note
that in Eq. (1) the chemical affinity is not indexed on i,
implying that the disequilibrium energy offset is identical
for all components of the target-phase. The proof of this re-
sult is given by Ghiorso (1987, Appendix b). If the affinity is
zero, then the phases are mutually tangent (Fig. 1) and Eq.
(1) reduces to the standard Gibbs requirement of heteroge-
neous phase equilibrium.

Eq. (1) expands to

li;oc-phase ¼ Aþ lo
i;target-phase þ RT ln ai;target-phase ð2Þ

where a denotes the activity of a component in the target-
phase and the superscript zero refers to the standard state
condition of unit activity of the pure substance at any
T and P. The activity may be further expanded into a
product of mole fraction and activity coefficient (i.e.,
ai;target-phase ¼ X ici), which permits Eq. (2) to be rearranged
as:

li;oc-phase � lo
i;target-phase � RT ln ci ¼ Ui ¼ Aþ RT ln X i ð3Þ

In Eq. (3) the activity coefficient terms are brought to the
left-hand-side of the expression and are included in the def-
inition of Ui.

2.1. Saturation state algorithm

The saturation state algorithm proceeds as follows:

(I) Assume initially that the target-phase is ideal, which
implies all RT lnci are zero. This assumption renders
Ui independent of Xi (Eq. (3)).

(II) Form difference expressions from Eq. (3), as

Uiþ1 � Ui ¼ RT ln X iþ1 � RT ln X i

which may be rearranged to give

ri ¼ exp
Uiþ1 � Ui

RT

� �
¼ X iþ1

X i
ð4Þ
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