
Computers and Mathematics with Applications 72 (2016) 494–522

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Breaking spaces and forms for the DPG method and
applications including Maxwell equations✩

C. Carstensen a, L. Demkowicz b, J. Gopalakrishnan c,∗

a Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
b Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
c PO Box 751, Portland State University, Portland, OR 97207-0751, USA

a r t i c l e i n f o

Article history:
Received 21 September 2015
Received in revised form 17 March 2016
Accepted 6 May 2016
Available online 4 June 2016

Keywords:
Electromagnetics
Time harmonic
Ultraweak
Wellposedness
Hybridization
Traces

a b s t r a c t

Discontinuous Petrov–Galerkin (DPG) methods are made easily implementable using
‘‘broken’’ test spaces, i.e., spaces of functions with no continuity constraints across mesh
element interfaces. Broken spaces derivable from a standard exact sequence of first order
(unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces
that connect the broken spaces to their unbroken counterparts is provided. Stability of
certain formulations using the broken spaces can be derived from the stability of analogues
that use unbroken spaces. This technique is used to provide a complete error analysis
of DPG methods for Maxwell equations with perfect electric boundary conditions. The
technique also permits considerable simplifications of previous analyses of DPG methods
for other equations. Reliability and efficiency estimates for an error indicator also follow.
Finally, the equivalence of stability for various formulations of the same Maxwell problem
is proved, including the strong form, the ultraweak form, and various forms in between.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When a domainΩ is partitioned into elements, a function in a Sobolev space like H(curl,Ω) or H(div,Ω) has continuity
constraints across element interfaces, e.g., the former has tangential continuity, while the latter has continuity of its
normal component. If these continuity constraints are removed from the space, then we obtain ‘‘broken’’ Sobolev spaces.
Discontinuous Petrov–Galerkin (DPG) methods introduced in [1,2] used spaces of such discontinuous functions in broken
Sobolev spaces to localize certain computations. The studies in this paper begin by clarifying this process of breaking
Sobolev spaces. This process, sometimes called hybridization, has been well studied within a discrete setting. For instance,
the hybridized Raviart–Thomas method [3,4] is obtained by discretizing a variational formulation and then removing the
continuity constraints of the discrete space, i.e., by discretizing first and then hybridizing. In contrast, in this paper, we
identify methods obtained by hybridizing first and then discretizing, a setting more natural for DPGmethods. We then take
this idea further by connecting the stability of formulations with broken spaces and unbroken spaces, leading to the first
convergence proof of a DPG method for Maxwell equations.

Section 2 is devoted to a study of the interface spaces that arisewhen breaking Sobolev spaces. These infinite-dimensional
interface spaces can be used to connect the broken and the unbroken spaces. The main result of Section 2, contained in
Theorem 2.3, makes this connection precise and provides an elementary characterization (by duality) of the natural norms
on these interface spaces. This theorem can be viewed as a generalization of a similar result in [5].
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Having discussed breaking spaces, we proceed to break variational formulations in Section 3. The motivation for the
theory in that section is that some variational formulations set in broken spaces have another closely related variational
formulation set in their unbroken counterpart. This is the case with all the formulations on which the DPGmethod is based.
The main observation of Section 3 is a simple result (Theorem 3.3) which in its abstract form seems to be already known
in other studies [6]. In the DPG context, it provides sufficient conditions under which stability of broken forms follows from
stability of their unbroken relatives. As a consequence of this observation, we are able to simplify many previous analyses of
DPG methods. The content of Sections 2 and 3 can be understood without reference to the DPG method.

A quick introduction to the DPGmethod is given in Section 4, where known conditions needed for a priori and a posteriori
error analysis are also presented. One of the conditions is the existence of a Fortin operator. Anticipating the needs of the
Maxwell application, we then present, in Section 5, a sequence of Fortin operators for H1(K),H(curl, K) and H(div, K), all
on a single tetrahedral mesh element K . They are constructed to satisfy certain moment conditions required for analysis of
DPG methods. They fit into a commuting diagram that helps us prove the required norm estimates (see Theorem 5.1).

The time-harmonic Maxwell equations within a cavity are considered afterward in Section 6. Focusing first on a simple
DPGmethod forMaxwell equation, called the primal DPGmethod, we provide a complete analysis using the tools developed
in the previous section. To understand one of the novelties here, recall that the wellposedness of the Maxwell equations is
guaranteed as soon as the excitation frequency of the harmonic wave is different from a cavity resonance. However, this
wellposedness is not directly inherited by most standard discretizations, which are often known to be stable solely in an
asymptotic regime [7]. The discrete spaces used must be sufficiently fine before one can even guarantee solvability of the
discrete system, not to mention error guarantees. Furthermore, the analysis of the standard finite element method does
not clarify how fine the mesh needs to be to ensure that the stable regime is reached. In contrast, the DPG schemes, having
inherited their stability from the exact equations, are stable no matter how coarse the mesh is. This advantage is striking
when attempting robust adaptive meshing strategies.

Another focus of Section 6 is the understanding of a proliferation of formulations for the Maxwell boundary value
problem. One may decide to treat individual equations of the Maxwell system differently, e.g., one equation may be
imposed strongly, while another may be imposed weakly via integration by parts. Mixed methods make a particular choice,
while primal methods make a different choice. We will show (see Theorem 6.3) that the stability of one formulation
implies the stability of five others. The proof is an interesting application of the closed range theorem. However, when
the DPG methodology is applied to discretize these formulations, the numerical results reported in Section 7, show that
the various methods do exhibit differences. This is because the functional settings are different for different formulations,
i.e., convergence to the solution occurs in different norms. Section 7 also provides results from numerical investigations on
issues where the theory is currently silent.

2. Breaking Sobolev spaces

In this section, we discuss preciselywhatwemean by breaking Sobolev spaces using amesh.Wewill define broken spaces
and interface spaces and prove a duality result that clarifies the interplay between these spaces. We work with infinite-
dimensional (but mesh-dependent) spaces on an open bounded domain Ω ⊂ R3 with Lipschitz boundary. The mesh,
denoted by Ωh, is a disjoint partitioning of Ω into open elements K such that the union of their closures is the closure
ofΩ . The collection of element boundaries ∂K for all K ∈ Ωh, is denoted by ∂Ωh. We assume that each element boundary
∂K is Lipschitz. The shape of the elements is otherwise arbitrary for now.

We focus on the most commonly occurring first order Sobolev spaces of real or complex-valued functions, namely
H1(Ω),H(div,Ω), and H(curl,Ω). Their broken versions are defined, respectively, by

H1(Ωh) = {u ∈ L2(Ω) : u|K ∈ H1(K), K ∈ Ωh} =


K∈Ωh

H1(K),

H(curl,Ωh) = {E ∈ (L2(Ω))3 : E|K ∈ H(curl, K), K ∈ Ωh} =


K∈Ωh

H(curl, K),

H(div,Ωh) = {σ ∈ (L2(Ω))3 : σ |K ∈ H(div, K), K ∈ Ωh} =


K∈Ωh

H(div, K).

As these broken spaces contain functionswith no continuity requirements at element interfaces, their discretization is easier
than that of globally conforming spaces.

To recover the original Sobolev spaces from these broken spaces, we need traces and interface variables. First, let us
consider these traces on each element K inΩh.

trKgradu = u|∂K u ∈ H1(K),

trKcurl,⊤E = (nK × E)× nK |∂K E ∈ H(curl, K),

trKcurl,⊣E = nK × E|∂K E ∈ H(curl, K),

trKdivσ = σ |∂K · nK σ ∈ H(div, K).
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