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a b s t r a c t

The conservative Allen–Cahn (AC) equation has been studied analytically and numerically.
Our mathematical analysis and numerical experiment, however, show that previous
numericalmethods are not second-order accurate in time and/or do not conserve the initial
mass. The aim of this paper is to propose high-order and mass conservative methods for
solving the conservative AC equation. In the methods, we discretize the conservative AC
equation by using a Fourier spectral method in space and first-, second-, and third-order
implicit–explicit Runge–Kutta schemes in time. We show that the methods inherit the
mass conservation. Numerical experiments are presented demonstrating the accuracy and
efficiency of proposed methods.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Allen–Cahn (AC) equation was originally introduced as a phenomenological model for antiphase domain coarsening
in a binary alloy [1]:

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+ 1φ(x, t), x ∈ Ω, 0 < t ≤ T , (1)

whereΩ is a domain inRd (d = 1, 2, 3). Letφ(x, t) = (mα−mβ)/(mα+mβ) be the difference between the concentrations of
the two components in amixture, wheremα andmβ are themasses of phases α and β . The function F(φ) = 0.25(1−φ2)2 is
the Helmholtz free-energy density for φ, which has a double-well form, and ϵ > 0 is the gradient energy coefficient. The AC
equation and its various modified forms have been applied to a wide range of problems, such as phase transitions [1], image
segmentation and image inpainting [2–4], motion by mean curvature [5–11], two-phase fluid flows [12], crystal growth
[13,14], and grain growth [15–19].

Since the classical AC equation (1) does not conserve the initial volume, Rubinstein and Sternberg [20] added a Lagrange
multiplier β(t) to Eq. (1) in order to impose the conservation of volume:

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+ 1φ(x, t) + β(t), (2)

where β(t) =


Ω
F ′(φ(x, t))dx/(ϵ2


Ω
dx). This equation has been studied analytically and numerically [12,21–29]. How-

ever, it has a drawback of maintaining small geometric features since the Lagrange multiplier is only dependent on t .

∗ Tel.: +82 2 3277 6990; fax: +82 2 3277 6991.
E-mail address: leeh@korea.ac.kr.
URL: http://math.korea.ac.kr/∼leeh.

http://dx.doi.org/10.1016/j.camwa.2016.05.011
0898-1221/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2016.05.011
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2016.05.011&domain=pdf
mailto:leeh@korea.ac.kr
http://math.korea.ac.kr/~leeh
http://math.korea.ac.kr/~leeh
http://math.korea.ac.kr/~leeh
http://math.korea.ac.kr/~leeh
http://math.korea.ac.kr/~leeh
http://math.korea.ac.kr/~leeh
http://dx.doi.org/10.1016/j.camwa.2016.05.011


H.G. Lee / Computers and Mathematics with Applications 72 (2016) 620–631 621

Recently, Brassel and Bretin [30] introduced the following conservative AC equation and they observed that it has better
volume-preserving properties than Eq. (2) (Eq. (3) shows an O(ϵ2) error for the conservation of volume, whereas Eq. (2)
shows an O(ϵ) error):

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+ 1φ(x, t) + β(t)


F(φ(x, t)), (3)

where β(t) =


Ω
F ′(φ(x, t))dx/(ϵ2


Ω

√
F(φ(x, t))dx).

Kim et al. [31] proposed a practically unconditionally stable hybrid scheme for solving Eq. (3). The method conserves
the initial mass exactly, but is only first-order accurate in time. Zhai et al. [32,33] proposed several methods, including
Crank–Nicolson and operator splitting, for solving Eq. (3) and its fractional-in-space version. However, thesemethods are not
second-order accurate in time and/or do not conserve the initialmass (wewill discuss this inmore detail in Section 2). To the
best of our knowledge, there is nomethodwhich can achieve high-order time accuracy and keep themass conservation. The
aim of this paper is to propose high-order and mass conservative methods for solving Eq. (3). In the methods, we discretize
Eq. (3) by using a Fourier spectral method in space and first-, second-, and third-order implicit–explicit (IMEX) Runge–Kutta
schemes [34] in time. We show that the methods inherit the mass conservation.

This paper is organized as follows. In Section 2, we review previous numerical methods for solving Eq. (3). In Section 3,
we construct high-order and mass conservative methods for solving Eq. (3). Numerical experiments showing the accuracy
and efficiency of proposed methods are presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Review on previous numerical methods

In this section, we review previous numerical methods for solving the conservative AC equation (3). For simplicity and
clarity of exposition, we consider Eq. (3) in one-dimensional space Ω = (0, L) with a homogeneous Neumann boundary
condition:

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
+

∂2φ(x, t)
∂x2

+ β(t)

F(φ(x, t)), (4)

where β(t) =


Ω
F ′(φ(x, t))dx/(ϵ2


Ω

√
F(φ(x, t))dx). Let M be a positive integer, h = L/M be the space step size, and 1t

be the time step size. Let φn
m be an approximation of φ(xm, tn), where xm = (m − 1/2)h for m = 1, . . . ,M and tn = n1t .

The discrete cosine transform and its inverse transform are

φk = ωk

M
m=1

φm cos(xmξk) (5)

and

φm =

M
k=1

ωkφk cos(xmξk), (6)

where ω1 = 1/
√
M , ωk =

√
2/M for 2 ≤ k ≤ M , and ξk = π(k − 1)/L.

Zhai et al. [32] proposed Crank–Nicolson (CN) method and operator splitting (OS) method to achieve second-order time
accuracy. However, these methods have drawbacks. It is well-known that the CN method is second-order accurate in time,
but the authors observed that the CN method cannot keep the mass conservation and, for the OS method, the authors split
Eq. (4) into three subequations as follows:

∂φ(x, t)
∂t

=
∂2φ(x, t)

∂x2
, (7)

∂φ(x, t)
∂t

= −
F ′(φ(x, t))

ϵ2
, (8)

∂φ(x, t)
∂t

= β(t)

F(φ(x, t)). (9)

Eq. (7) was solved using the CN method

φ
(1)
m − φn

m

1t
=

1
2


∂2φ

(1)
m

∂x2
+

∂2φn
m

∂x2


, i.e., φ(1)

m = C−1


1 −

1t
2 ξ 2

k

1 +
1t
2 ξ 2

k
C[φn

m]


, (10)

whereC denotes the discrete cosine transformandC−1 its inverse transform. Eq. (8) can be solved analytically in the physical
space and the solution φ

(2)
m is given as follows [35,36]:

φ(2)
m =

φ
(1)
m

e
−21t

ϵ2 +


φ

(1)
m

2 
1 − e

−21t
ϵ2
 . (11)
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