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a b s t r a c t

In this paper, we investigate the optimal error estimate and the superconvergence of linear
fifth order time dependent equations.Weprove that the local discontinuousGalerkin (LDG)
solution is (k + 1)th order convergent when the piecewise Pk space is used. Also, the
numerical solution is (k +

3
2 )th order superconvergent to a particular projection of the

exact solution. The numerical experiences indicate that the order of the superconvergence
is (k + 2), which implies the result obtained in this paper is suboptimal.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider linear fifth order time dependent equation given by

ut + αux + βuxxxxx = 0,
u(x, 0) = u0(x)

(1.1)

with the periodic boundary condition, where α, β are constants. We study the superconvergence of the local discontinuous
Galerkin solution towards a particular projection of the exact solution.

The fifth order nonlinear KdV equation

ut + uux + γ uxxx + δuxxxxx = 0, (1.2)

which is a model for weakly nonlinear waves in a wide variety of media, for instance, long waves in shallow liquid under ice
cover [1]. Since the LDG method of (1.2) has two more auxiliary variables than those of Eq. (1.1), which makes the proof of
superconvergence much more complicated. We only consider Eq. (1.1), which is the linearized model of (1.2) when γ = 0.

The discontinuous Galerkin (DG) methods belong to a class of finite element methods using the piecewise polynomial
spaces for both the numerical solutions and the test functions. Since the piecewise polynomials used in the methods permit
complete discontinuity across the element interface, the DG methods easily accommodate arbitrary h–p adaptivity. These
methods also allow arbitrarily unstructured meshes and have a compact stencil. The DG method was first used to solve
neutron equations [2]. Then, Cockburn et al. developed the Runge–Kutta discontinuous Galerkin (RKDG)methods for solving
hyperbolic conservation laws in a series of papers [3–6]. The local discontinuous Galerkin (LDG) method is an extension of
the DG method aiming at solving the equations with high order spatial derivatives. The first LDG method was constructed
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by Cockburn and Shu to solve convection–diffusion equations [7]. It wasmotivated by the successful numerical experiments
of Bassi and Rebay for the compressible Navier–Stokes equations [8]. Then the LDG methods were applied to solve various
partial differential equations with higher order derivatives including nonlinear one-dimensional and two-dimensional KdV
type equations [9,10], the general fifth-order KdV type equations [11] and Ito-type coupled KdV equations [12]. See review
paper [13] for more details. The LDGmethods for KdV-type equations was first developed in [9], in which the sub-optimal L2
error estimateswere obtained. In [14], the optimal L2 error estimateswere derived byXu and Shubyhandling the jump terms
at the cell boundaries which appear because of the discontinuous nature of the finite element space for the LDG methods.

In recent years, there are a lot of efforts to obtain the superconvergence results for the DGmethods and the LDGmethods.
In [15,16], Adjerid et al. explored the superconvergence of the DG method for the ordinary differential equations and the
steady hyperbolic problems at the Radau points. Based on Fourier analysis, Cheng and Shu proved that the DG solution is
(k +

3
2 )th order superconvergent to the particular projection of the exact solution when the linear polynomials on the

uniform meshes are used for linear conservation laws with the periodic condition [17]. The results were extended by
Cheng and Shu in [18] to the general polynomial degree k, non-uniform regular meshes, for the technique used in [18] is a
finite type. The proof of the superconvergence of the LDG solution towards a particular projection of the exact solution for
convection–diffusion equationswas also given in [18]. Then the same techniquewas used to obtain the superconvergence of
LDG method for linearized Korteweg–de Vries equations [19] and a class of fourth-order equations [20]. But the numerical
results show that the convergence orders obtained in [18–20] are not optimal. In [21,22], Yang and Shu demonstrate that the
orders of the superconvergence in [18] increase half-order for both linear conservation laws and linear parabolic equations
by considering the dual problem of the original problem and constructing particular initial projection. They also prove that
the DG and LDG solutions converge at a rate of (k + 2) at Radau points. In [23,24], Cao and Zhang carry out a different
framework for proving superconvergence at Radau points. Further more, they obtain a (k + 1)th superconvergence rate for
the derivative approximation. Later Cao and Zhang extend their results to two-dimensional hyperbolic equations in [25].
For the nonlinear problems, Meng and Shu proved that the error between the DG solution and a particular projection is
(k +

3
2 )th superconvergent for the scalar nonlinear conservation laws, when the upwind fluxes are used [26].

In this paper, we study the optimal error estimate and the superconvergence of linear fifth order time dependent
equations. In [18–20], two functionals were introduced to estimate the superconvergence which made the proof a little
involved. Thanks to the lemma in [21], we give a simpler proof. Of course the superconvergence order is (k +

3
2 ). And the

numerical experiments indicate that our result is suboptimal. This paper is organized as follows: in Section 2, we introduce
the LDGmethod for linear fifth order equation and some notations; in Section 3, we achieve the optimal error estimate of the
LDGmethod for Eq. (1.1); in Section 4, we give the proof of the superconvergence of the LDG solution towards the particular
projection of exact solution; in Section 5, some numerical results are provided; the conclusion and the future works are
given in Section 6; In the Appendix, we give the proof of a lemma.

2. Local discontinuous Galerkin method

2.1. LDG method for fifth order equations

In this subsection, we will present the LDG method for the Eq. (1.1). First we divide the interval I = [0, 2π ] into N
subintervals as follows:

0 = x 1
2
< x 3

2
< · · · < xN+

1
2

= 2π.

Then we denote each subinterval by Ij = (xj− 1
2
, xj+ 1

2
) and the centre of the subinterval xj =

1
2 (xj− 1

2
+ xj+ 1

2
). We also set

hj = xj+ 1
2

− xj− 1
2
. The left and right limits of the function vh at the discontinuity point xj+ 1

2
are denoted by (vh)−j+ 1

2
and

(vh)
+

j+ 1
2
, respectively. And we denote the jump of the function vh(x) at the element interface as [vh]j+ 1

2
= (vh)

+

j+ 1
2
− (vh)

−

j+ 1
2
.

Let h = maxj hj and hmin = minj hj. We assume that our mesh is regular, which means that there exists a constant λ such
that λ = h/hmin. Clearly, the mesh is uniform, when λ = 1.

We denote the finite element space by

V k
h = {v : v|Ij ∈ Pk(Ij)},

where Pk(Ij) is the space of polynomials of degree at most k on Ij.
To construct the LDGmethod, we need four auxiliary variables s, r, p, q, and rewrite Eq. (1.1) as a first order linear system

ut + (αu + βs)x = 0, s = rx, r = px, p = qx, q = ux. (2.1)

Then we need to find uh, qh, ph, rh, sh ∈ V k
h such that for any ρ, ζ , η, ψ, φ ∈ V k

h

((uh)t , ρ)j + α(ûhρ
−
|j+ 1

2
− ûhρ

+
|j− 1

2
− (uh, ρx)j)+ β(s̃hρ−

|j+ 1
2

− s̃hρ+
|j− 1

2
− (sh, ρx)j) = 0, (2.2a)

(sh, ζ )j − r̃hζ−
|j+ 1

2
+ r̃hζ+

|j− 1
2

+ (rh, ζx)j = 0, (2.2b)
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