Computers and Mathematics with Applications 72 (2016) 704-719

Contents lists available at ScienceDirect ms

withepplicet ione

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Mean field models for interacting ellipsoidal particles @CMk
R. Borsche?, A. Klar*"*, A. Meurer?, O. Tse?

2 Technische Universitdt Kaiserslautern, Department of Mathematics, Erwin-Schrodinger-StrafSe, 67663 Kaiserslautern, Germany
b Frqunhofer ITWM, Fraunhoferplatz 1, 67663 Kaiserslautern, Germany

ARTICLE INFO ABSTRACT

Article history: We consider a mean field hierarchy of models for large systems of interacting ellipsoids
Received 24 November 2015 suspended in an incompressible fluid. The models range from microscopic to macroscopic
Received in revised form 12 April 2016 mean field models. The microscopic model is based on three ingredients. Starting from

Accepted 22 May 2016

Available online 23 June 2016 a Langevin type model for rigid body interactions, we use a Jefferys type term to model

the influence of the fluid on the ellipsoids and a simplified interaction potential between
the ellipsoids to model the interaction between the ellipsoids. A mean field equation and
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1. Introduction

Large systems of interacting ellipsoidal shaped particles have attracted the attention of researchers from many differ-
ent fields. For example, such systems are used to describe polymers and liquid crystals in the chemical sciences [1-3]. The
movement of ellipsoidal particles suspended in a fluid is also used in process engineering to describe the physics inside a liq-
uid-liquid extraction column [4-8]. Arecent application of such models may be found in paper production processes [9-12].

Mathematically the movement of ellipsoidal particles can be described on a microscopic level by large systems of ordinary
differential equation based on Newtonian laws of mechanics for translational and rotational motion of the ellipsoids. For
ellipsoidal particles suspended in an incompressible viscous fluid, one can use the model of Jeffery (e.g. [13,14,3]), which
describes the forces exerted by the fluid on an ellipsoid. In our work, the inter-particle interaction forces between ellipsoids
are described via pairwise potentials for the particles and a random force. For the interaction potentials, we use potentials
common in the literature for polymers [ 15-20], where the form of the ellipsoids is modeled with the help of Gaussian type
functions. This leads to a Langevin-type microscopic model similar to the ones described in [21-23,3]. For the numerical
treatment of large systems of hard interacting ellipsoids, we refer, for example, to [24].

For a very large number of particles, macroscopic equation for density, mean velocity, and other statistical quantities
are expected to be a more efficient approximation of these models. In the present work we derive, via a mean field
approximation, corresponding kinetic equation, which can be used in turn to derive hydrodynamic and scalar limit
equations. This procedure has also been used for example in the case of self-organizing systems of particles or for the
description of pedestrian or granular flows [25-28].
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Fig. 2.1. Sketch of an ellipsoidal particle with position r, orientation angle 6; and velocity v;.

The paper is organized as follows: In Section 2 the microscopic model is introduced and the ellipsoidal interaction
potential is constructed. From this, we derive the mean field limit equation in Section 3 and use different moment closure
procedures for the derivation of different hydrodynamic limit equations in Section 4. In Section 5, we numerically compare
the derived models with the microscopic model for several different examples and flow fields.

2. The microscopic model

We consider a microscopic Langevin-type model as in [3] to describe the motion of ellipsoidal particles suspended in an
incompressible fluid in two space dimensions. The interaction of the fluid with the ellipsoids is described by a Jefferys type
term [13,14]. Interactions of the ellipsoids with each other are described by a many-particle interaction potential similar
to [16].

As illustrated in Fig. 2.1, each ellipsoidal particle is described by its position r; € R?, velocity v; € R?, orientation angle
6 € [0, 2m) and angular velocity @w; € R. The angle 6, is given by the relative angle between the horizontal axis and the
main axis of the ellipsoidal particle such that the angle 6; = 0 corresponds to the orientation (1, 0) . The equations of
motion for N particlesi =1, ..., N are

drl = vidt

. . 11 L . . .
dug = y(u—vpde — —= > VUG, 6, 0)dt — ViVirde — (A /2)vide + AdW

, . 7 (2.1)
do; = widt

. . . 11 L . . .
doy = 7(g(0; w) — wpdt — —— > VUl ml, 0}, 6)dt — Ve Va(0))dt — (B*/2)wdt + BAW,,

< iz

with appropriate initial conditions. Here u is the velocity of a stationary surrounding fluid and g(6, u) is given by
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The first terms on the right hand side of the velocity and angular velocity equations describe the relaxation of the particles
to the velocity of the fluid and to the rotation resulting from the velocity field, respectively. The speed of relaxation is
determined by the parameters y and y. The second terms model the repulsive interaction between the particles. The
parameters m and I. are the mass and the moment of inertia of the particles. The functions V7, V; model an outer potential
like for example gravitation or a magnetic field. The parameters A, B are nonnegative diffusion constants and W4, W& are
independent standard Brownian motions. The interaction potential is given by the following considerations.

There exist many different interaction potentials for ellipsoidal particles [ 15-20]. We use the soft potential as proposed
by Berne [16]. It is obtained by overlapping two ellipsoidal Gaussians representing the mutual repulsion of two particles.
This leads to
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Here, | = 2L and d = 2D where L is the length and the D the width of the particle. The parameter €y models the strength of
the potential. To have compact support we slightly modify the potential and define

GF—1(y©®+y®) G- )
1—G-n (@ +y®) " G-n

y(©) = (P —d)n@) @ n@) +d*1, A

ur,7,6,0) =a@,6)exp (— (2.2)



Download English Version:

https://daneshyari.com/en/article/470265

Download Persian Version:

https://daneshyari.com/article/470265

Daneshyari.com


https://daneshyari.com/en/article/470265
https://daneshyari.com/article/470265
https://daneshyari.com

