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a b s t r a c t

In this paper we revisit a recent approach to classical monotone variational inequalities
by means of a projected reflected gradient-type method in RN . A line-search procedure is
incorporated for possible varying step-sizes and no Lipschitz-continuity condition on the
operator is required. A main feature of the proposed method is that it requires only one
projection step onto the feasible set at each iteration.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper, C is a closed convex set of RN , while ⟨., .⟩ and | · | denote the usual inner product of RN and its
induced norm, respectively. We aim at revisiting the computation of an element of the solution set, denoted by S, of the
classical variational inequality problem:

find u ∈ C such that ⟨F(u), v − u⟩ ≥ 0 ∀v ∈ C, (1.1)

where F : RN
→ RN is a given mapping such that:

S ≠ ∅; (1.2a)

F is monotone over RN , i.e., for all x, y ∈ RN : ⟨F(x)− F(y), x− y⟩ ≥ 0; (1.2b)

F is continuous over RN . (1.2c)

This formalism (first introduced by Stampacchia in [1]) is well-known to provide a unified framework for the study of
many significant real-world problems arising inmechanics, economics and so on (see, e.g., [2–5] and the references therein).
It is worthwhile underlining that (1.1) gave rise to many algorithmic solutions depending on the structure of C and the
properties of F . In particular when F and C do not possess any special structure the proposed numerical approaches to (1.1)
are mainly based upon projection techniques onto C; see, e.g., [6].

Definition 1.1. The metric projection PC : RN
→ C is the operator defined for all x ∈ RN by PCx := argminz∈C |z − x|.
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The use of such techniques was suggested by the following equivalent fixed point formulation of (1.1): find u ∈ C such
that u = PC (u− λF(u)), where λ is any positive real number.

Let us recall that the oldest method for solving (1.1) in a general framework is the following so-called extra-gradient
method (introduced by Korpelevich [7]):

xn = PC (xn − λnF(xn)), xn+1 = PC (xn − λnF(xn)), (1.3)

where the step-sizes (λn) are positive real numbers. This algorithm involves two projection steps per iteration and its
convergence was initially established under monotonicity and Lipschitz continuity of F for constant step-sizes (depending
on the Lipschitz constant of F ). Later on, the extra-gradientmethod has been enhanced through several extensions involving
Armijo-type rules (see, e.g., Khobotov [8],Marcotte [9], Sun [10], Iusem [11], Tseng [12]) and outer approximation techniques
(see, e.g., Solodov and Svaiter [13]). These latter strategies are specifically well-adapted to the situation when F is not
Lipschitz continuous or no estimate of the Lipschitz constant is available.

This paper is mostly concerned with the case when the evaluation of the projection operator onto C is computationally
expensive. A crucial feature regarding the design of numerical methods related to such a context is to minimize the number
of evaluation of PC per iteration. As famous algorithms with such interesting features we mention that ones discussed by
Iusem–Svaiter [14] and Solodov–Svaiter [13]. Thesemethods (that involve amore effective line-search procedure)were able
to drop the Lipschitz continuity condition even for a pseudo-monotone mapping F (also see Iusem–Pérez [15] for extension
to nonsmooth cases of F ). These latter algorithms involve one projection onto C at each iteration together with another
projection onto either C or onto its intersection with some hyperplane, but, contrary to what was done so far, no additional
projection is needed in the line-search procedure. Modified extra-gradient methods with only one projection onto C per
iteration has been also investigated. As an example, a special case (relative to (1.1)) of the general method proposed by
Tseng [16] formally involves one projection step but its convergence was established by using an Armijo–Goldstein-type
stepsize rule for which the trial values of step-sizes require additional evaluations of PC . Other examples of such methods
combine one projection onto C per iteration togetherwith a cheaper projection step onto some hyperplane (see, e.g., Censor,
Gibali and Reich [17], Malitsky and Semenov [18]). However, their convergence was stated under the condition of Lipschitz
continuity of F for step-size rules that depend on the Lipschitz constant.

In thisworkwe focus our attention on an alternative approach to (1.1) based on the following so-called projected reflected
gradient method recently proposed by Malitsky [19]:

yn = 2xn − xn−1, xn+1 = PC (xn − λnF(yn)), (1.4)

with positive step-sizes (λn). This latter algorithm (formally) involves only one evaluation for each of the operators PC
and F per iteration. It was investigated in the context of a Hilbert space together with conditions of monotonicity and
L-Lipschitz continuity of F (for some positive value L) over the whole space. The convergence of (1.4) was obtained is
the special case of a constant step-size λ ∈


0,
√
2−1
L


. A convergence result was also established for varying step-

sizes (λn) given by a specific procedure that (unfortunately) involves the computation of additional projections onto C .
Nonetheless numerical experiments have been performed in [19] showing interesting and promising features (regarding
the computational viewpoint) comparing with other numerical strategies.

The following variant of (1.4) has been also investigated (in a Hilbert space under the same conditions on F ) in [20]:

yn = xn + θn(xn − xn−1), xn+1 = PC (xn − λnF(yn)), (1.5)

where θn =
λn

δλn−1
for some δ ∈ (0, 1]. The convergence of (1.5) was stated under the general conditions below on the

step-sizes:

λn|F(yn)− F(yn−1)| ≤ ϵδ(
√
2− 1)|yn − yn−1|, for some ϵ ∈ (0, 1), (1.6a)

λn ≤ λn−1


δ +

λn−1

λn−2

1/2

, (1.6b)

(λn) ⊂ [µ̄, ν̄] for some positive µ̄ and ν̄. (1.6c)

Our purpose here is to propose an enhanced variant of (1.5) for solving (1.1) under condition (1.2) (so we drop the
Lipschitz continuity of the operator F ) by incorporating a linesearch procedure that does not require any additional
evaluation of PC .

2. The algorithm and its convergence

For the sake of simplicity, we sometimes use the following notations: ẋn = xn − xn−1 and ẏn = yn − yn−1. In order to
compute a solution of (1.1) we focus on the sequence (xn) generated by the following method.
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