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a b s t r a c t

GPU accelerated high order reconstruction of signed distance function of the level set
method is studied. The flow based reinitialization equation is discretized in space by
using a nodal discontinuous Galerkin method on adaptive unstructured grids. Artificial
diffusion with a modal decay rate based regularity estimator is used to damp out high
frequency solution components near kinks, where mesh adaptivity is applied. A two rate
Adams-Bashforth time integrator is developed to avoid time step restrictions resulting
from artificial diffusion stabilization and local mesh refinement. Platform independence of
the solver is achieved by using an extensiblemulti-threading programming API that allows
runtime selection of different computing devices (GPU and CPU) and threading interfaces
(CUDA, OpenCL and OpenMP). Overall, a highly scalable numerical scheme that preserves
the simplicity of the original level set method is obtained. Performance and accuracy of
the method to construct signed distance function on highly disturbed initial data with
smooth and non-smooth interfaces are tested through distinct two- and three-dimensional
problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Level set (LS) methods [1] are commonly used to represent surface dynamics of multiphase flows. Integration of
LS equations in time often distorts the scalar LS function such that it has flat or steep gradients near the interface.
Reinitialization replaces the LS function with the signed distance function, which is regular and has uniform gradients.

Commonly used reinitialization methods can be categorized as fast sweeping [2] and fast marching [3] methods, which
are based on the solution of static boundary value problems, and flow based methods [4], which make use of an artificial
flow field to obtain the signed distance function in steady-state. Flow based methods are more flexible, accurate and easier
to parallelize, and therefore preferred in the current study. The most popular flow based reinitialization equation is the
following pseudo time first order PDE [4].

∂φ

∂t
+ sgn(φ0)(|∇φ| − 1) = 0, φ(x, 0) = φ0. (1)

Characteristics of Eq. (1) emanate from the interface in the normal direction with unit speed, hence reinitialization starts
from the interface and propagates in the normal direction. The equation requires boundary conditions when the interface
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intersects the domain boundaries and creates regions without characteristic information, as in the case of contact line
problems. These problems require additional information about the interface topology and are beyond the scope of this
study. Except for the sign term, Eq. (1) is a Hamilton–Jacobi (HJ) equation. The general approach is to smear the sign term
in a narrow band and treat Eq. (1) as a standard HJ equation with a smooth Hamiltonian. Finite difference Essentially Non-
Oscillatory (ENO) and Weighted ENO (WENO) schemes have been developed to solve this equation on Cartesian grids [5,
6]. Although these schemes have been adapted to unstructured grids [7], they are complicated to implement and inefficient
computationally. Additionally, they result in mass loss problems in interface capturing applications [8].

Discontinuous Galerkin (DG) methods are a class of finite element methods that make use of completely discontinuous,
piecewise polynomial approximations for spatial discretization and have excellent properties to overcome the problems
mentioned above. High-order DGmethods can accurately track interfaces with kinks having discontinuous derivatives over
long time periods due to their lownumerical dissipation [9]. Using DG for LS advection givesmore accurate results compared
to the use of standard HJ-ENO/WENO finite difference schemes [10–12]. However, it is rarely used for reinitialization,
because the HJ equations cannot be written in conservative form and it is difficult to define suitable numerical fluxes for
them in the DG framework.

The first DG method for the solution of HJ equations is introduced in [13]. Accuracy and stability of this method are
analyzed in [14] and reinterpreted for a simplified implementation with reduced computational cost in [15], though this
approachmade the algorithm indirect, complicated andnot optimal for reinitialization [12]. The local discontinuousGalerkin
(LDG) method, which was first developed to discretize second order operators, was also used for the direct solution of
HJ equations [16]. Recently, the DG method has found an application in LS interface modeling in which reinitialization
is required to maintain regularity of the LS function. These studies used geometric reinitialization either based on height
function on 2D Cartesian grids [12] or recursive contouring algorithm [17–19]. The reported results had noisy interfaces
with considerable mass loss, which could be avoided only by using high recursion levels.

High-order DG methods, like other high-order methods, are known to produce oscillations when the approximation
space is inadequate to resolve the main features of the true solution. Stabilization techniques for DG discretizations can
be classified as limiting, polynomial reconstruction, spectral filtering and artificial diffusion ([20] and references therein).
Among these, artificial diffusion relies on explicitly adding viscous terms to the governing equations in order to smooth the
solution near the discontinuities. Although artificial diffusion offers a fast and reliable stabilization, it requires sophisticated
discontinuity detectors to find the amount of diffusion and the regions over which it needs to be added [21,22]. Also it
reduces the allowable time step size when a global explicit time integrator is used. Time step restriction can be relaxed with
local time-stepping, which uses different time step sizes to satisfy the local CFL condition on different elements. Due to their
efficiency and ease of implementation, local time integration schemes based onmulti-rate Adams–Bashforth (MRAB) [23,24]
and multi-rate Runge–Kutta (MRRK) methods [25,26] are used frequently. Different from the previous studies, we designed
an efficient local time stepping strategy for the DG method, which does not require additional storage or computational
effort, resulting in an efficient implementation on multi-threaded architectures.

Weak element connection and high-order approximation space of the DG method lead to local memory access and
high arithmetic intensity. These properties make the DG method well suited for multi-threaded architectures, especially
GPUs. Performance of the nodal DG methods on massively parallel architectures have been demonstrated for several
applications [23,27–29]. Reinitialization formulation of the current study is accelerated using modern GPUs and many-
core CPUs. Platform independence is achieved using the OCCA [30] kernel language that abstracts commonmulti-threading
languages (OpenCL, CUDA, pThreads and OpenMP) and offers flexibility to choose the architecture and the programming
language at runtime.

In this study, we introduce a GPU accelerated, explicit, multi-rate discontinuous Galerkinmethod for high-order solution
of level set reinitialization on unstructured dynamic meshes. The rest of the paper is organized as follows: Section 2
provides themathematical formulation including discretization of reinitialization equation, local time integration and basic
properties ofmesh adaptivity. Parallelization of themethodonmulti-threaded architectures is discussed in Section 3. Results
demonstrating accuracy, performance and scalability of the method for two- and three-dimensional test cases are given in
Section 4.

2. Formulation

2.1. Preliminaries

It is assumed that d dimensional domain Ω ⊂ Rd is well approximated by the computational domain, Ωh, which is
partitioned into non-overlapping, possibly non-conforming triangular/tetrahedral elements,Ωh = ∪

K
k=1 Dk. Two elements,

D−

k and D+

k have a common face if ∂D−

k ∩ ∂D+

k ≠ ∅, where ∂Dk denotes the element boundary. Also ∂Dk =
Nf

f=1 ∂D
f ,−
k with

Nf being the total number of connections for an element which is equal to number of faces for conformal discretizations.
Let n−

= −n+ be the unit outward normal vector to ∂Dk. Q−

k and Q+

k denote the traces of any scalar function, Q , when
evaluated at the element boundaries of D−

k and D+

k , respectively.
The discontinuous approximate spaces are

VN = {v ∈ L2(Ω)|v|Dk ∈ PN(Dk), ∀Dk ∈ Ωh} (2)
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