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a b s t r a c t

In this paperwe analyze a discontinuousGalerkin finite elementmethod for approximating
solutions to transport equations with certain nonlinearities. We consider models for age-
structured populations allowing for a nonlinear removal rate with non-local boundary
conditions on the in-flow boundary. The method employs a stabilizing term over the
interior edges allowing for convergence in a stronger than usual norm. We establish
convergence rates for general higher order basis functions and provide numerical examples
consistent with this result.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An interesting class of transport equations involves those inwhich the inflowboundary condition depends on the amount
of the substance present within the domain of advection. As an example, consider a channel in which a valve at the inflow-
end turns on or off depending on the level of water in the channel.

Such models arise frequently in biology and ecology in the study of population dynamics where the species are
structured in some manner (typically by age). In this setting, the models fall under the broad class of the Gurtin–MacCamy
or Lotka–McKendrick models and have been studied extensively [1–4]. Areas where such models arise include cell
physiology [5], ecology, e.g. host-parasitization dynamics [6] and epidemiology [7].

Let u(a, t) represent a concentration density as a function of the independent variables (a, t). The system we consider is

α1ut + α2ua + λ(a, t, u) = f (a, t), t > 0, 0 < a < Â (1a)

B(t) = u(0, t) =

 Â

0
β(a)u(a, t) da, t > 0 (1b)

u(a, 0) = uo(a), 0 < a < Â. (1c)

The variable Âmay be finite or infinite and β is a bounded non-negative real-valued function. The coefficients α1, α2 are
positive functions of the independent variables. Inmost papers, these coefficients are set to 1 and represent the characteristic
directions for (1a); in the present work we allow for more general characteristics, and denote α = (α1, α2). With this
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notation, if α1, α+2 are constants, uα = ∇ · (αu) = α1ut + α2ua and (1a) becomes

uα + λ(a, t, u) = f (a, t).

The analysis of the numerical method in this paper is valid even for non-constant αi.
In the aforementioned age-structured population models, u(a, t) denotes the age density at time t of individuals of age

a. A biological interpretation of the source term f (a, t) is an effect on the removal rate of the population which is due to
external effects, and in which members of the species are equally affected regardless of their age. Another interpretation is
in terms of a harvesting function [8]. The removal rate λ(a, t, u) ≥ 0 is interpreted as removal due to natural death. The
terminal age of individuals in the population is Â, and can be finite (e.g. for differentiated blood cells) or infinite (for stem
cells). B(t) is the birth rate of individuals. In the rest of this paper, we will adopt this biologically-inspired terminology for
these variables.

In the context of age-structured population models [1,9], it is typical to consider model (1) with f (a, t) ≡ 0. In many
prior works, a specific form of the removal rate λ(t, a, u) is considered to be

λ(t, a, u) = µ(a)u(a, t)

where the age-dependent mortality rate µ(a) > 0 depends only on a. In other words, the removal rate is linear in the
unknown u. In the present paper we allow for a more general form of removal,

λ(t, a, u) = µ(a)q(u(a, t))

where q(z)may be nonlinear in its argument. Consequently the removal rate may become nonlinear in u.
Finally, if the terminal age Â is finite, then in age-structured applicationsλ is allowed to becomeunbounded as a → Â [10].

There are also investigations ofmodels like (1)with boundedmortality, e.g. [11]. If Â is infinite, this ratemust remain positive
and growing. In this paper we allow the mortality rate to be unbounded at terminal age.

The well-posedness properties of suchmodels have been extensively studied under various assumptions on the removal
rate λ(a, t, u) and birth rateβ [1,4,12,13].With these assumptions, a range of numerical approximation strategies have been
suggested for (1), including collocation and finite difference approaches [14–20]. In addition, semi-discretemodels (discrete
in age, continuous in time) have been studied in [9,21]. A space–time continuous finite element strategy is investigated
in [22]. Another popular strategy is to integrate the system in the age variable, leading to a delay differential equation; this
is then discretized [5]. In [9], a continuous-in-time, DG-in-age method is analyzed and used for (1).

The analysis in this paper was inspired by prior work on DG methods for linear hyperbolic problems, including those
in [23–28]. Since we allow the removal rate λ(a, t, u) to be nonlinear in the density u, we cannot directly use the ideas for
the analysis of finite element algorithms for linear hyperbolic PDEs.

The use of discontinuous Galerkin methods for age-structured populations models has been discussed by other authors.
In this paper, we extend the ideas found in [10,23,24]. The authors in [24] consider an hp-DG method for the simplified
model where f (t, a) ≡ 0 and λ(t, a, u) is linear in u(t, a). Similarly, in [10], model (1) is considered with f (t, a) ≡ 0,
the direction of the characteristics is (1, 1), and a specific form of λ(t, a, u), namely, λ(t, a, u) = µ(a)u(a, t). The focus is
on an analysis of an explicit method which allows for a block-wise solve, and which moreover guarantees a non-negative
solution. This is achieved by enforcing a CFL-like condition on the mesh. In our work, we consider the more general version
of the problem (1), allowing for forcing terms and nonlinear behavior in the removal rate. Similar to [10,24], our proposed
stabilized method is also in the high-order setting. Unlike in [10], our scheme does not remove non-locality in an explicit
way. Our formulation allows for characteristics in directions other than (1, 1); while age-structured populations provide an
important area of application for the models presented in (1) (where the (1, 1) direction is natural), our goal is to provide
a simple DG framework which can be used in other settings as well. Our method allows for unstructured shape-regular
meshes. We introduce a symmetric stabilization of the DG formulation as suggested in [25] for a linear hyperbolic problem.

The plan for this paper is as follows. In Section 2, we make precise some model assumptions. In some instances, (1)
allows for exact solutions; we collect some of these. In Section 3 we introduce a DG method for this system, and analyze its
stability properties. A key a priori estimate is presented in Section 4. Since the model is nonlinear, we provide details of the
implementation in Section 5. Finally, in Section 6 we present some illustrative numerical examples supporting the results
of Section 4.

2. Model problem

LetΩ = [0, Â] × [0, T ] ⊂ R2 and set α = [α1, α2]
T with α1, α2 ∈ C1(Ω) being strictly positive. In addition, define

Γ −
= {(a, t) ∈ Γ : α(a, t) · n∂Ω < 0} (2)

and

Γ +
= {(a, t) ∈ Γ : α(a, t) · n∂Ω > 0} (3)
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