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a b s t r a c t

In this work we consider the problem of approximating the statistics of a given Quantity of
Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random
domain parameterized by N random variables. The elliptic problem is remapped onto a
corresponding PDE with a fixed deterministic domain. We show that the solution can be
analytically extended to a well defined region in CN with respect to the random variables.
A sparse grid stochastic collocationmethod is then used to compute themean and variance
of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and
compared to those obtained in numerical experiments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In many physical processes the practicing engineer or scientist encounters the problem of optimal design under
uncertainty of the underlying domain. For example, in graphene sheet nano fabrication the exact geometries of the designed
patterns (e.g. nano pores) are not easy to control due to uncertainties. If there is no quantitative understanding in the
involved domain uncertainty such a design may be carried out by trial and error. However, in order to accelerate the design
cycle, it is essential to quantify the influence of this uncertainty on Quantities of Interest(QoI), for example, the sheet stress
of the graphene sheet. Other examples include lithographic process introduced in semi-conductor design [1].

Collocation and perturbation approaches have been suggested in the past as an approach to quantify the statistics of
the QoI with random domains [1–5]. The collocation approaches proposed in [2–4] work well for large amplitude domain
perturbations although suffer from the curse of dimensionality. Moreover, these works lack error estimates of the QoI with
respect to the number of sparse grid points. On the other hand, the perturbation approaches introduced in [5,1] are efficient
for small variations of the domain.

In this paper we give a rigorous convergence analysis of the collocation approach based on isotropic Smolyak grids. This
consists of an analysis of the regularity of the solution with respect to the parameters describing the domain perturbation.
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In this respect we show that the solution can be analytically extended to a well defined region in CN with respect to the
random variables. Moreover, we derive error estimates both in the ‘‘energy norm’’ as well as on functionals of the solution
(Quantity of Interest) for Clenshaw–Curtis abscissas that can be easily generalized to a larger class of sparse grids.

The outline of the paper is as follows: In Section 2 we set up the mathematical problem and reformulate the random
domain elliptic PDE problem onto a deterministic domain with random matrix coefficients. We assume that the random
boundary is parameterized by N random variables. In Section 3 we show that the solution can be analytically extended into
a well defined region in CN . Theorem 7 is the main result of this paper. In Section 4 we set up the stochastic collocation
problem and summarize several known sparse grid approaches that are used to approximate the mean and variance of the
QoI. In Section 5 we assume that the random domain is truncated to Ns 6 N random variables. We derive error estimates
for the mean and variance of the QoI with respect to the finite element, sparse grid and truncation approximations. Finally,
in Section 7 numerical examples are presented.

2. Setup and problem formulation

Let Ω be the set of outcomes from the complete probability space (Ω, F , P), where F is a sigma algebra of events and
P is a probability measure. Define LqP(Ω), q ∈ [1, ∞], as the space of random variables such that

LqP(Ω) :=


v |


Ω

|v(ω)|q dP < ∞


and L∞

P (Ω) := {v | ess sup
ω∈Ω

|v(ω)| < ∞},

where v : Ω → R is a measurable random variable.
Suppose D(ω) ⊂ Rd is an open bounded domain with Lipschitz boundary ∂D(ω) parameterized with respect to a

stochastic parameterω ∈ Ω . The strong formof the problemwe consider in thiswork is: given sufficiently smooth regularity
on f (·, ω), a(·, ω) : D(ω) → Rd, find u(·, ω) : D(ω) → R such that almost surely

−∇ · (a(x, ω)∇u(x, ω)) = f (x, ω), x ∈ D(ω),
u = 0 on ∂D(ω).

Now, assume the diffusion coefficient satisfies the following assumption.

Assumption 1. There exist constants amin and amax such that

0 < amin 6 a(x, ω) 6 amax < ∞ for a.e. x ∈ D(ω), ω ∈ Ω,

where

amin := ess inf
x∈D(ω),ω∈Ω

a(x, ω) and amax := ess sup
x∈D(ω),ω∈Ω

a(x, ω).

We now state the weak formulation as:

Problem 1. Find u(·, ω) ∈ H1
0 (D(ω)) s.t.

D(ω)

a(x, ω)∇u(x, ω) · ∇v(x) dx =


D(ω)

f (x, ω)v(x) dx ∀v ∈ H1
0 (D(ω)) a.s. in Ω, (1)

where f (·, ω) ∈ L2(D(ω)) for a.e. ω ∈ Ω .

Under Assumption 1 the weak formulation has a unique solution up to a zero-measure set in Ω .

2.1. Reformulation onto a fixed domain

Now, assume that given any ω ∈ Ω the domain D(ω) can be mapped to an open and bounded reference domain U ⊂ Rd

with Lipschitz boundary through a random map F(ω) : U → D(ω), where we assume that F(ω) is one-to-one and the
determinant of the Jacobian |∂F(·, ω)| ∈ L∞(U) almost surely. Furthermore, we assume that |∂F | is uniformly greater than
zero almost surely. We will, however, make the following equivalent assumption.

Assumption 2. Suppose that the map F(ω) : U → D(ω) is one-to-one a.s. and that there exist constants Fmin and Fmax such
that

0 < Fmin 6 σmin(∂F(ω)) and σmax(∂F(ω)) 6 Fmax < ∞

almost everywhere in U and almost surely in Ω . We have denoted by σmin(∂F(ω)) (and σmax(∂F(ω))) the minimum
(respectively maximum) singular value of the Jacobian ∂F(ω).
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