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a b s t r a c t

In this work, two models to simulate the single-phase multicomponent flow in reservoirs
are introduced: single-phase multicomponent flow model and two-phase compositional
flow model. Because the single-phase multicomponent flow is a special case of the two-
phase compositional flow, the two-phase compositional flow model can also simulate the
case. We compare and analyze the two models when simulating the single-phase multi-
component flow, and then demonstrate the equivalence of the twomodelsmathematically.
An experiment is also carried out to verify the equivalence of the two models.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Much work has contributed to the field of single-phase and multi-phase flow simulations in reservoirs. Such flow
simulations can be applied in broad regimes such as enhancing oil and gas recovery fromhydrocarbon reservoirs by injection
of chemicals [1–3], storing greenhouse gases in saline aquifers and oil fields [4,5], monitoring the transport of contaminants
in groundwater flow [6–8] among others.

The study of the flows in reservoirs can be traced back to the year 1856 when Frenchman Henry Darcy investigated the
flow characteristics of sand filters for water purification. He established the foundation of the quantitative theory for the
flow of homogeneous fluids in porous media [9]. Then Muskat and Wyckoff [10–13] studied the flow of reservoir fluids in
1930’s, and their work was instrumental in advancing the knowledge of reservoir dynamics to its present state.

Algorithmically, many schemes have been developed to simulate the multi-phase flow such as the fully implicit scheme
and implicit–explicit hybrid scheme. The use of fully implicit schemes in reservoir simulations can be traced back to
the work of Roebuck et al. [14], where they developed an implicit numerical method to simulate the differential and
algebraic relations governing one-dimensional three-phase flows in porousmedia. Thenmuchwork to improve the solution
procedure of implicit schemewas carried out such as [15,16]. The first application of an implicit–explicit scheme in reservoir
simulations can be found in [17], where an implicit equation for the oil-phase pressure and two explicit equations for the
over-all composition and water saturation were obtained. Further investigation on implicit–explicit hybrid scheme can
be observed in [18–22]. A fully implicit scheme can solve for the pressures, velocities, saturations etc. simultaneously,
and its time step can be set larger than the implicit–explicit hybrid scheme. However, the fully implicit scheme requires
significantlymore computing resources than the implicit–explicit hybrid schemewhen solving the discretized linear system.
The implicit–explicit hybrid scheme solves for the pressures implicitly, then solves for the saturations or concentrations
explicitly. Its computing cost is lower compared to the fully implicit scheme, but to achieve convergence its time step is
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limited by the CFL condition and the splitting error from decoupling pressure and saturation/concentration equations. In
many large-scale simulations, the number of unknowns in the discretized linear systemof the fully implicit scheme becomes
very large, and it is not efficient to solve the system, thus an implicit–explicit hybrid scheme is preferred.

Moreover, many discretization schemes have been proposed in the multi-phase flow simulation. Popular methods
include finite difference method (FDM) [23,24], finite element method (FEM) [25–28] and Lattice-Boltzmann method
(LBM) [29–38]. Traditional FDM dominates both theoretical and practical work in the multi-phase flow simulation. It is
based on the physical concepts such as mass conservation law, energy conservation law, Darcy’s law and the isothermal
fluid phase behavior. Both structured and unstructured grids can be used in discretization to represent the geometry of
the reservoir accurately. FDM is simple and easy to implement, but it is not very versatile in dealing with boundaries and
achieving stable results. Some restrictive mesh refinement has to be imposed to get a nonsingular system. However, FEM
can get well-posedness results easily, and its variational framework is very amenable to a posteriori error estimation. But
the sparsity patterns from FEM are less structured and can be more difficult to parallelize efficiently. Although FDM and
FEM achieve much success in the multi-phase flow simulation, they cannot tackle the complex pore space and inherent
free-boundary issues such as breaking and merging of interfaces in the reservoir. Thus, LBM is proposed to capture the
microscopic effects and reproduce the macroscopic behavior. LBM does not track interfaces but rather maintains the sharp
interfaces automatically. Macroscopic behavior such as interface dynamics can arise naturally from the microscopic effects.
FDM is the discretization method of choice in this work, considering its ready realization of parallelization.

Based on the algorithmic scheme and discretization scheme mentioned above, a series of models to simulate the flows
have been proposed. Two of them are the single-phase multicomponent flowmodel and the two-phase compositional flow
model. Because the single-phasemulticomponent flow is a special case of the two-phase compositional flow, the two-phase
compositional flow model can also simulate the single-phase multicomponent flow. However, it is unknown that whether
the twomodels would output the same simulation results. To the best of our knowledge, no work has ever tried to compare
and analyze the two models when simulating the single-phase multicomponent flow. Thus, whether the two models are
equivalent with each other in such condition is a work deserved to do. In this work, we firstly establish the two models
under some assumptions, and then we derive the condition to achieve the equivalence mathematically. Finally, we verify
the equivalence by a numerical experiment.

2. Single-phase multicomponent flow model

2.1. Basic equations

In the single-phase multicomponent flow model, the flow is in either oil phase or gas phase. Suppose there are c
components, then the c mass conservation equations can be expressed as

∂(φxmξ)

∂t
= ∇ ·


xmξ

µ
k (∇p − ρg)


+ qm, m = 1, 2, . . . , c. (2.1)

In the above equation, φ is the porosity of the porous medium, xm stands for the molar fraction of component m, ξ is the
molar density of the flow, t is the time, µ is the viscosity, p is the pressure, ρ is the mass density of the flow, g is the gravity
vector, qm is the source or sink term of componentm, and c is the number of components. k is the permeability tensor, and
in 2D condition it can be expressed as
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kxx kxy
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.

Diffusion and dispersion effect is omitted in the model. We add the c equations of (2.1) together and have
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+ q, (2.2)

q =

c
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qm.

Because ξ is the function of p and Nm with Nm being the molar amount of component m, the left-hand side of (2.2) can be
derived further as
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