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a b s t r a c t

Exponential Rosenbrock integrators were shown to be very efficient in solving large
systems of stiff ordinary differential equations. So far, such exponentialmethods have been
derived up to order 5. The aim of this paper is to construct new integrators of orders 4,
5, and 6. In contrast to the existing schemes, the new schemes, which are called parallel
exponential Rosenbrock integrators, can be implemented on a multi-processor system or
parallel computers. The new schemes of orders 4 and 5 require the same number of stages
as the old schemes of the same orders of accuracy. However, while the parallel integrator
of order 4 can be implemented with the same cost as a 2-stage method, the ones of orders
5 and 6 can be implemented at the cost of a 3-stage method only. This offers a significant
improvement over the old schemes in terms of computational time when implemented in
parallel. The numerical experiments show the efficiency of the new integrators as well as
the comparative performance with the old ones.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Discretizing a time dependent partial differential equation in space often yields a large systemof stiff ordinary differential
equations in the form of an initial value problem (IVP)

u′(t) = F(u(t)) = Au(t)+ g(u(t)), u(t0) = u0. (1.1)

As of today, there are many numerical methods for solving the IVP (1.1). Due to the technological development of computer
architectures, much attention has also been given to parallel methods for the numerical solution of IVPs. To the best of our
knowledge, the paper by Nievergelt [1] is one of the earliest work on parallel methods for IVPs. In the last thirty years this
area of research has received much interest. Many efficient methods were developed; see, for example, [2–11]. Most of the
existing parallel methods for integrating IVPs are based on standard time integration techniques such as explicit or implicit
Runge–Kutta methods, multistep methods, and general linear methods.

In this paperwe are concernedwith the construction of new parallel methods based on exponential Rosenbrockmethods
(see [12]). They belong to the class of exponential integrators. It is worth mentioning that in recent years exponential
integrators turned out to be very competitive in solving (1.1) in the context of stiff problems, see for instance [13–19].
On the one hand, they can overcome the step size restrictions for explicit methods which are caused by stiffness. On the
other hand, as they treat the nonlinearity in a fully explicit way, they do not require solving large nonlinear systems at every
integration step like standard implicit methods. As they make use of the variation-of-constants formula to integrate the
linear part of (1.1) exactly, they need to compute the exponential and related functions of A. In the case when A has a large
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norm or is even an unbounded operator, this task was considered as a computational bottleneck of exponential integrators.
This situation, however, has changed when Hochbruck and Lubich [13] published their landmark paper in 1997 where they
analyzed Krylov subspace methods for efficiently computing the matrix exponential operator with large norm. Since then
exponential integrators have become an active field of research in numerical analysis (see the review paper by Hochbruck
and Ostermann [20]).

Exponential Rosenbrock methods are constructed by applying exponential Runge–Kutta methods [15] to a continuous
linearization of the vector field F along the numerical solution un of (1.1). The linearized problem is given by

u′(t) = Jnu(t)+ gn(u(t)), (1.2)

where Jn denotes (an approximation to) the Jacobian of F evaluated at un, and gn is the nonlinear remainder, i.e.,

Jn =
∂F
∂u
(un), gn(u) = F(u)− Jnu. (1.3)

The idea of linearizing the vector field as (1.2) was first proposed by Pope [21]. The benefits of solving (1.2) in every
integration step are the following. First, it offers a better stability when integrating the nonlinearity. Second, it can
significantly simplify the order conditions. (Since ∂gn

∂u (un) = 0, the number of order conditions is much less than that of
exponential Runge–Kutta methods applied directly to (1.1)). In [12] methods up to order 4 have been constructed. The
implementation of exponential Rosenbrockmethodswasdiscussed in [22]. Recentlywe introduced anew theory for deriving
stiff order conditions for exponential Rosenbrock methods of arbitrary order, see [23]. In that paper we gave the stiff order
conditions for methods of order up to 6. For the construction of methods of order 5, we refer to [19]. Like the existing
exponential schemes, however, the newmethods of [19] do not allowparallelism across the stages and use a single processor
only. It should be mentioned that there are only a few works focusing on parallel implementation of matrix functions for
exponential integrators, see [24,25]. However, none of them deals with the construction of parallel exponential integrators.

Our idea for constructing parallel exponential Rosenbrock methods is to investigate the sparsity structure of the
coefficient matrix of the method. When solving the order conditions one typically has to work with coefficients that can
be taken as free parameters. By choosing the right ones and then zeroing them, we are able to derive several internal stages
of methods of orders 4, 5, and 6 that are independent of each other. As a consequence, such stages can be implemented
in parallel using multiprocessors leading to parallel methods. For example, we have constructed a 3-stage parallel scheme
of order 4 that can be implemented on two processors with the same cost as 2-stage methods. For methods of order 5,
two parallel schemes are constructed using 4 and 5 stages which can be implemented on two and three processors with
the same cost as 3-stage methods. Finally, we derived a sixth-order 7-stage parallel scheme that can be implemented like
3-stage methods by using four processors. As we can see, the parallel schemes use the same number of stages as the non-
parallel schemes which have the same orders. Therefore, when implemented in parallel, clearly the parallel schemes can
compute the solution much faster than the non-parallel ones.

The remainder of the paper is organized as follows. In Section 2 we briefly describe the class of exponential Rosenbrock
methods. Our motivation and ideas for constructing parallel exponential Rosenbrock schemes are presented in Section 3.
In Section 4 we recall the stiff order conditions that allow us to construct high order methods. Section 5 contains the main
results of the paper. Namely, we derive parallel integrators of orders 4, 5, and 6: pexprb43, pexprb54s4, pexprb54s5,
and pexprb65s7. Moreover, we prove that there does not exist an exponential Rosenbrockmethod of order 6with less than
or equal to 6 stages (Theorem 5.1). Section 6 is devoted to numerical results. We show that the parallel schemes of orders
4 and 5, when implemented in serial, perform similarly as their corresponding non-parallel schemes of the same orders
exprb43, exprb54s4, exprb54s5 which were constructed in [19]. When implemented in parallel, however, the parallel
schemes are shown to be much more efficient than the corresponding non-parallel ones in terms of total CPU time.

2. Exponential Rosenbrock schemes

Consider the numerical solution of (1.1) by (explicit) exponential Rosenbrockmethods. These schemes canbe represented
in the following form (see [12, Section 2.2]):

Uni = un + cihnϕ1(cihnJn)F(un)+ hn

i−1
j=2

aij(hnJn)Dnj, (2.1a)

un+1 = un + hnϕ1(hnJn)F(un)+ hn

s
i=2

bi(hnJn)Dni (2.1b)

with

Dni = gn(Uni)− gn(un), 2 ≤ i ≤ s. (2.1c)

Here un ≈ u(tn), ci are the nodes, s is the number of stages (s−1 internal stages and one external one), Uni ≈ u(tn + cihn), Jn
and gn are given in (1.3), hn = tn+1 − tn > 0 denotes the time step. The coefficients aij(z) and bi(z) are usually chosen as
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