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a b s t r a c t

In this paper, a C0 interior penalty method has been proposed and analyzed for distributed
optimal control problems governed by the biharmonic operator. The state and adjoint
variables are discretized using continuous piecewise quadratic finite elements while the
control variable is discretized using piecewise constant approximations. A priori and a
posteriori error estimates are derived for the state, adjoint and control variables under
minimal regularity assumptions. Numerical results justify the theoretical results obtained.
The a posteriori error estimators are useful in adaptive finite element approximation and
the numerical results indicate that the sharp error estimators work efficiently in guiding
the mesh refinement.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the distributed optimal control problem defined by

min
u∈Uad

J(y, u) subject to (1.1a)

∆2y = f + u inΩ, (1.1b)

y|∂Ω =
∂y
∂n


∂Ω

= 0, (1.1c)

where the domain Ω ⊂ R2 is assumed to be bounded polygonal with boundary ∂Ω , the load function f ∈ H−1(Ω),
Uad ⊂ L2(Ω) is a non-empty, convex and bounded admissible set of controls defined by

Uad = {u ∈ L2(Ω) : ua ≤ u(x) ≤ ub a.e. inΩ}, (1.2)

ua, ub ∈ R ∪ {±∞}, ua < ub are given and the cost functional J(y, u) is defined by

J(y, u) =
1
2
∥y − yd∥2

L2(Ω) +
α

2
∥u∥2

L2(Ω) (1.3)

with a fixed regularization parameter α > 0 and yd is the given observation for y.
This paper discusses a C0 interior penalty (C0 IP) method based discretization of (1.1a)–(1.1c) and develops a priori and a

posteriori error estimates for the state, adjoint and control variables in polygonal domains with possible corner singularities.
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Within the finite element framework, the fourth order problems can be solved using conforming, non-conforming or
mixed finite element methods. C0 IP methods have become attractive alternatives to solve fourth order problems in the
recent past due to the fact that they use standard C0 Lagrange finite element spaces which are designed for second order
problems and the derivation of variational forms is flexible in terms of handling even complicated problems and also yield
quasi-uniform estimates [1–6]. Discontinuous Galerkin methods [7–9], to cite a few references have also become attractive
for fourth order problems in different aspects although they involve larger numbers of degrees of freedom than that of C0

IP methods.
Though the approximation theory of discretized optimal control problems for second order problems is well-developed,

except for [10–12], not much literature is available for the finite element analysis and a priori /a posteriori estimates of
optimal control problems governed by fourth order elliptic equations. A priori error estimates for the approximate state and
control for a distributed optimal control problem governed by the biharmonic equation with discretization based on the
mixed formulation designed by Hellan–Herrmann–Miyoshi defined on convex polygons have been discussed in [11]. The
analysis in this work heavily relies on the fact that the domain is a convex polygon and this guarantees the assumed additional
regularity of the exact solution. But in general, the regularity of solution for a fourth order problem in polygonal domains is
limited. For instance, for the biharmonic equation defined in a polygonal domain with Dirichlet boundary conditions, when
f ∈ H−1(Ω) and u ∈ L2(Ω), the solution of the state equation y ∈ H2+γ , where the elliptic regularity index γ ∈ (1/2, 1],
with γ = 1, ifΩ is convex and γ < 1 ifΩ is non-convex. Since the standard techniques are no longer applicable when extra
regularity assumptions on the exact solution is not available, in this paper, we combine ideas used in a posteriori analysis and
a priori analysis, that is, we use a medius analysis [13] to establish both a priori and a posteriori estimates for optimal control
problems governed by the biharmonic operator. That is, under realistic regularity assumptions for the problem defined on
a polygonal domain, we
• establish a priori error estimates for the state and adjoint variables in the energy, H1 and L2 norms, an L2 convergence

estimate for the control variable and a super convergence result for the post-processed control in convex domains;
• derive reliable and efficient residual based a posteriori error estimators for the state, adjoint and control variables which

drive the adaptive mesh refinements;
• perform numerical experiments that substantiate the theoretical results.

To our knowledge, this is the first attempt to study the discretization errors for optimal control problems governed by higher
order equations under lower regularity assumptions using both a priori and a posteriori approaches.

The rest of the paper is organized as follows. We describe the weak formulation for the optimal control problem in
Section 2. Section 3 deals with the C0 IP formulation. A priori error estimates for the state, adjoint and control variables
followed by numerical results that justify the estimates are presented in Section 4. Reliable and efficient a posteriori error
estimators for the state, adjoint and control variables are established in Section 5 and this is followed by numerical examples
that illustrate the performance of the error estimator.

2. Weak formulation

Recasting (1.1a)–(1.1c) in the weak form yields
min

(y,u)∈V×Uad
J(y, u) subject to (2.1a)

a(y, φ) = (f + u, φ) ∀φ ∈ V , (2.1b)
where V = H2

0 (Ω), a(·, ·) : V × V → R is a bilinear form defined by a(φ,w) =

Ω
D2φ : D2wdx ∀φ,w ∈ V with

D2φ : D2w =
2

i,j=1
∂2φ
∂xi∂xj

∂2w
∂xi∂xj

, satisfying V ellipticity, that is,

∃C > 0 such that a(φ, φ) ≥ C∥φ∥
2
V . (2.2)

For notational convenience, we denote both the L2 inner product and the duality pairing between f ∈ H−1(Ω) and
φ ∈ V ⊂ H1

0 (Ω) defined on Ω using (·, ·) and distinguishing them as inner product or duality pairing is easily clear from
the context. The L2 norm defined onΩ is denoted as ∥ · ∥. For any measurable set T ⊂ Ω , the notations (·, ·)0,T and ∥ · ∥0,T
are used to denote the L2 inner product and norm on T . Standard notions of function spaces and norms are used throughout
in the paper, unless mentioned otherwise.

It is well-known [14,15] that the convex control problem (2.1a)–(2.1b) has a unique solution (ȳ, ū) ∈ V × Uad and there
exists a co-state p̄ ∈ V such that the triplet (ȳ, p̄, ū) satisfies the Karush–Kuhn–Tucker (KKT) optimality conditions [14]:

a(ȳ, φ) = (f + ū, φ) ∀φ ∈ V , (2.3a)
a(p̄, φ) = (ȳ − yd, φ) ∀φ ∈ V , (2.3b)
(αū + p̄, v − ū) ≥ 0 ∀v ∈ Uad. (2.3c)

The optimal control ū in (2.3c) has the representation a.e. for x ∈ Ω:

ū(x) = π[ua,ub]


−

1
α
p̄(x)


, (2.4)
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