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a b s t r a c t

We provide a general framework of multiscale discontinuous Galerkin methods developed
in Buffa et al. (2006), Hughes et al. (2006) for general second-order partial differential
equations. We establish stability of the method and prove the error estimates.
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1. Introduction

Over the past decades, there has been much development in discontinuous Galerkin (DG) methods. Cockburn et al.
have worked extensively on the development and analysis of DG methods for variety of nonlinear hyperbolic conserva-
tion laws [1]. Examples of the DG methods include the Bassi–Rebay method [2], the Local Discontinuous Galerkin (LDG)
methods [3,4], the Oden–Babuška–Baumann (OBB-DG) method [5], and interior penalty Galerkin methods [6–8]. For DG
methods applied to general problems, we also refer to [1,9,10], and the references cited therein. Compared with continuous
Galerkin methods, the DG methods possess better properties in many situations but they require much large number of
degrees-of-freedom, [11,12].

Recently, there have been shown much efficient methods related with DG method. For instance, multiscale mortar
DG–DG couplingmethodswere introduced in [13,14] based on four different DG formulations, the OBB-DG [5], the nonsym-
metric interior penalty Galerkin (NIPG) [15], the symmetric interior penalty Galerkin (SIPG) [8,16–18], and the incomplete
interior penalty Galerkin (IIPG) [6,17,18]. There, the mortar variable was used as a Lagrange multiplier on the interface.
The computational problem reduces to the interface problem having reduced size of the system. Hybridizable DG methods
were also introduced in [19,20] to reduce the number of degrees-of-freedom of DG. On the other hand, a multiscale dis-
continuous Galerkin (MDG) method was developed in [21,22] for advection–diffusion problems. The solution of the MDG
method is expressed as a sum of the fine scale (‘‘local’’) and coarse scale components. The solutions of the ‘‘local’’ problems
are discontinuous but they are parameterized by the degrees-of-freedom of continuous space (coarse scale). The discrete
problem of the MDGmethod has the equation size of the one of the continuous Galerkin method. The MDGmethod retains
the quality of the (donor) DGmethod and has potential of computational cost of continuous Galerkin methods. The authors
of [21,22] numerically studied the MDGmethod and showed that the inf–sup constant is positive, bounded uniformly from
zero. Mathematical analysis was not treated there. In this paper, we provide analysis for the stability and the error estimates
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of the MDGmethod. In [21], a stabilized variant of the MDGmethod (SMDG) was also introduced. The authors modified the
(donor) DG method by adding an SUPG stabilization term and obtained the stabilized DG (SDG) method. They then defined
the SMDG method with the (donor) SDG method. They obtained the same error estimates as for the (donor) SDG method.

In this paper, we provide a general framework of the MDG method and establish mathematical analysis for general
second-order partial differential equations. We assume heterogeneous anisotropic diffusion tensor which is allowed to be
degenerate.We formulate theMDGmethod systematically by defining the local problem in such away that the (global)MDG
method is consistent. We show the stability of the method and prove the error estimates. For the convergence analysis, we
first establish the approximation properties of the approximation space which consists of the solution spaces of the local
problems. Using the local properties of the method, we then prove the error estimates for the solution to the MDGmethod.

The organization of the remainder of this paper is as follows. In Section 2, we introduce the model problem. In Section 3,
we present the finite element space for the MDG method. In Section 4, we provide the general framework of the MDG
method. Finally, in Section 5, we apply the MDG method to the model problem. We show stability of the local and global
problems. We prove the error estimates of the approximate solution.

2. Model problem

LetΩ be a bounded open domain inRm, m = 2, 3with a polyhedral boundary ∂Ω .We consider the advection–diffusion–
reaction equation

− ∇ · (a(x)∇u) + ∇ · (β(x)u) + c(x)u = f (x), (2.1)
where f ∈ L2(Ω) and c ∈ L∞(Ω) are real-valued, β = {βi}

m
i=1 is a vector function whose entries βi are Lipschitz continuous

real valued function on Ω , and a = (aij)mi,j=1 is a symmetric matrix whose entries are bounded, piecewise continuous real-
valued functions defined on Ω , with

ζTa(x)ζ ≥ 0 ∀ζ ∈ Rm, a.e. x ∈ Ω. (2.2)
By the square root lemma, the matrix function a then admits a unique (symmetric) square root

√
a and it satisfies

aw · v =
√
aw ·

√
a v ∀w, v ∈ Rm. (2.3)

We also adopt the following hypothesis: There exists a positive function co such that

(co(x))2 = c(x) +
1
2
∇ · β(x) a.e. x ∈ Ω. (2.4)

By n(x) we denote the unit outward normal vector to ∂Ω at x ∈ ∂Ω . We define
∂Ω− = {x ∈ ∂Ω : β(x) · n(x) < 0} and ∂Ω+ = {x ∈ ∂Ω : β(x) · n(x) ≥ 0}.

The sets ∂Ω− and ∂Ω+ will be referred to as the inflow and outflow boundaries, respectively. We supplement (2.1) with the
boundary conditions

(βu + a∇u) · n = gIβ · n on ∂Ω−, a∇u · n = 0 on ∂Ω+. (2.5)

3. Finite element spaces

In this section, we introduce the finite element spaces for the MDG method. Let T be a regular family of triangulations
of Ω in the sense that there exists a κ > 0 such that h

hmin
< κ , where hmin = minK∈T hK , hK is the diameter of K ∈ T , and

h = maxK∈T hK . We assume that T contains only regular nodes, that is, each element vertex is also a vertex to all adjacent
elements and there are no hanging nodes. The elements K ∈ T are either triangles and/or quadrilaterals in two dimensions
or tetrahedra and/or hexahedra in three dimensions. We denote by E the set of all edges of T , by Eo the set of all interior
edges, and by E∂ = E \ Eo the set of all boundary edges.

In consistent DGmethods, the solution values are coupled by generalized flux functions across the edges and they appear
by the jumps and averages. We define a partition of the elementary boundary ∂K for K ∈ T as follows:

∂−K = {x ∈ ∂K : β(x) · n(x) < 0}, ∂+K = {x ∈ ∂K : β(x) · n(x) ≥ 0}, (3.1)
wheren = nK is used, with abuse of notation, as the outward unit normalwith respect to ∂K and ∂∓K represent the element
inflow/outflow boundaries, respectively. For an interior edge or face e ∈ Eo, if β ≢ 0 on e, we choose the normal ne for which
ne ·β ≥ 0. Since e is shared by exactly two elements, the outward normal on one of these element will coincide with ne; we
call this element the upwind element and denote by K−. The outward normal on the other element will have the opposite
direction to the normal on e; we call this element downwind element and denote by K+. We denote by n− and n+ their
respective outward-pointing unit normals. The jumps and averages are then defined on e with ϕ±

= ϕ|K±
by

{ϕ} =
1
2
(ϕ−

+ ϕ+), [|ϕ|] = ϕ−n−
+ ϕ+n+. (3.2)

For a vector-valued function τ, element-wise smooth function, with analogous meaning for τ− and τ+, we define

{τ} =
1
2
(τ−

+ τ+), [|τ|] = τ−
· n−

+ τ+
· n+.
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