
Computers and Mathematics with Applications 68 (2014) 2314–2330

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

An efficient numerical scheme for the biharmonic equation
by weak Galerkin finite element methods on polygonal or
polyhedral meshes
Chunmei Wang a,b, Junping Wang c,∗

a Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
b Nanjing Normal University Taizhou College, Taizhou 225300, China
c Division of Mathematical Sciences, National Science Foundation, Arlington, VA 22230, United States

a r t i c l e i n f o

Article history:
Available online 12 June 2014

Keywords:
Weak Galerkin
Finite element methods
Weak partial derivatives
Biharmonic equation
Polyhedral meshes

a b s t r a c t

This paper presents a new and efficient numerical algorithm for the biharmonic equation
by using weak Galerkin (WG) finite element methods. The WG finite element scheme is
based on a variational form of the biharmonic equation that is equivalent to the usual
H2-semi norm. Weak partial derivatives and their approximations, called discrete weak
partial derivatives, are introduced for a class of discontinuous functions defined on a finite
element partition of the domain consisting of general polygons or polyhedra. The discrete
weak partial derivatives serve as building blocks for the WG finite element method. The
resulting matrix from the WG method is symmetric, positive definite, and parameter free.
An error estimate of optimal order is derived in an H2-equivalent norm for the WG finite
element solutions. Error estimates in the usual L2 norm are established, yielding optimal
order of convergence for all theWG finite element algorithms except the one corresponding
to the lowest order (i.e., piecewise quadratic elements). Some numerical experiments are
presented to illustrate the efficiency and accuracy of the numerical scheme.

Published by Elsevier Ltd.

1. Introduction

This paper is concerned with new developments of numerical methods for the biharmonic equation with Dirichlet and
Neumann boundary conditions. The model problem seeks an unknown function u = u(x) satisfying

∆2u = f , inΩ,
u = ξ, on ∂Ω,
∂u
∂n

= ν, on ∂Ω,

(1.1)

whereΩ is an open bounded domain in Rd (d = 2, 3) with a Lipschitz continuous boundary ∂Ω . The functions f , ξ , and ν
are given on the domain or its boundary, as appropriate.
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Avariational formulation for the biharmonic problem (1.1) is given by seeking u ∈ H2(Ω) satisfying u|∂Ω = ξ, ∂u
∂n |∂Ω = ν

and the following equation

d
i,j=1

(∂2iju, ∂
2
ijv) = (f , v), ∀v ∈ H2

0 (Ω), (1.2)

where (·, ·) stands for the usual inner product in L2(Ω), ∂2ij is the second order partial derivative in the directions xi and xj,
and H2

0 (Ω) is the subspace of the Sobolev space H2(Ω) consisting of functions with vanishing trace for the function itself
and its gradient.

Based on the variational form (1.2), one may design various conforming finite element schemes for (1.1) by constructing
finite element spaces as subspaces of H2(Ω). Such H2-conforming methods essentially require C1-continuity for the
underlying piecewise polynomials (known as finite element functions) on a prescribed finite element partition. The C1-
continuity imposes an enormous difficulty in the construction of the corresponding finite element functions in practical
computation. Due to the complexity in the construction of C1-continuous elements, H2-conforming finite element methods
are rarely used in practice for solving the biharmonic equation.

As an alternative approach, nonconforming and discontinuous Galerkin finite element methods have been developed
for solving the biharmonic equation over the last several decades. The Morley element [1] is a well-known example of
the nonconforming element for the biharmonic equation by using piecewise quadratic polynomials. Recently, a C0 interior
penalty methodwas studied in [2,3]. In [4], a hp-version interior-penalty discontinuous Galerkinmethodwas developed for
the biharmonic equation. To avoid the use of C1-elements,mixedmethods have been developed for the biharmonic equation
by reducing the fourth order problem to a system of two second order equations [5–9].

Recently, weak Galerkin (WG) has emerged as a new finite element technique for solving partial differential equations.
TheWGmethod refers to numerical techniques for partial differential equationswhere differential operators are interpreted
and approximated as distributions over a set of generalized functions. The method/idea was first introduced in [10] for
second order elliptic equations, and the concept was further developed in [11–13]. By design, WG uses generalized and/or
discontinuous approximating functions on general meshes to overcome the barrier in the construction of ‘‘smooth’’ finite
element functions. In [14], a WG finite element method was introduced and analyzed for the biharmonic equation by using
polynomials of degree k ≥ 2 on each element plus polynomials of degree k and k − 1 for u and ∂u

∂n on the boundary of each
element (i.e., elements of type Pk/Pk/Pk−1). The WG scheme of [14] is based on the variational form of (1u,1v) = (f , v).

In this paper, we will develop a highly flexible and robust WG finite element method for the biharmonic equation by
using an element of type Pk/Pk−2/Pk−2; i.e., polynomials of degree k on each element and polynomials of degree k−2 on the
boundary of the element for u and∇u. OurWG finite element scheme is based on the variational form (1.2), and has a smaller
number of unknowns than that of [14] for the same order of element. Intuitively, our WG finite element scheme for (1.1)
shall be derived by replacing the differential operator ∂2ij in (1.2) by a discrete and weak version, denoted by ∂2ij,w . In general,
such a straightforward replacement may not produce a working algorithm without including a mechanism that enforces a
certain weak continuity of the underlying approximating functions. A weak continuity shall be realized by introducing an
appropriately defined stabilizer, denoted as s(·, ·). Formally, our WG finite element method for (1.1) can be described by
seeking a finite element function uh satisfying

d
i,j=1

(∂2ij,wuh, ∂
2
ij,wv)h + s(uh, v) = (f , v) (1.3)

for all testing functions v. The main advantage of the present approach as compared to [14] lies in the fact that elements
of type Pk/Pk−2/Pk−2 are employed, which greatly reduces the degrees of freedom and results in a smaller system to solve.
The rest of the paper is to specify all the details for (1.3), and justifies the rigorousness of the method by establishing a
mathematical convergence theory.

The paper is organized as follows. In Section 2, we introduce some standard notations for Sobolev spaces. Section 3
is devoted to a discussion of weak partial derivatives and their discretizations. In Section 4, we present a weak Galerkin
algorithm for the biharmonic equation (1.1). In Section 5, we introduce some local L2 projection operators and then derive
some approximation properties which are useful in the convergence analysis. Section 6 will be devoted to the derivation of
an error equation for the WG finite element solution. In Section 7, we establish an optimal order of error estimate for the
WG finite element approximation in a H2-equivalent discrete norm. In Section 8, we shall derive an error estimate for the
WG finite element method approximation in the usual L2-norm. Finally in Section 9, we present some numerical results to
demonstrate the efficiency and accuracy of our WG method.

2. Preliminaries and notations

Let D be any open bounded domain with Lipschitz continuous boundary in Rd, d = 2, 3. We use the standard definition
for the Sobolev space Hs(D) and the associated inner product (·, ·)s,D, norm ∥ · ∥s,D, and seminorm | · |s,D for any s ≥ 0. For
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