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a b s t r a c t

In this work, an alternative lattice Boltzmann (LB) model for three-dimensional (3D) in-
compressible flow is proposed. The equilibrium distribution function (EDF) of the present
model is directly derived in accordance with the incompressibility conditions by applying
the Hermite expansion. Moreover, an alternative formula for pressure computation is de-
signed from the secondordermoment of the distribution function. Thepresent 3D LBmodel
inherits the advantageous features of Guo’s LB model: the density is a constant, the fluid
pressure is independent of density and the Navier–Stokes (N–S) equations for incompress-
ible flow can be derived. Two benchmark tests, flow over a backward-facing step and the
lid-driven cavity flow, are applied to validate the present model. Accurate results for these
tests are obtained with the present model, and further comparisons with the previous LB
models (the standard LB model, the He–Luo model and Guo’s LB model) demonstrate that
the present model provides better accuracy in the region of high deviatoric stress and such
advantage is further enhanced by using the D3Q27 lattice.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmannmethod (LBM) has won great popularity owing to its successful application in complex fluids such
as suspensions and interfacial dynamics [1–6]. The lattice Boltzmann equation is regarded as an explicit finite difference
approximation of a velocity-discrete Boltzmann equation [7,8]. In describing the macroscopic Navier–Stokes (N–S) equa-
tions, it is second order accurate in space and time [1,9,10]. In particular, the spatial second order accuracy for the deviatoric
stress tensor is proved theoretically by Luo and Yong [1]. In addition, comparing with the second order finite difference
method for the direct discretization of the N–S equations, the LBM has advantages in the low numerical dissipation and
better isotropy [1,10,11].

Based on the Chapman–Enskog analysis [12], the standard LBmodels can recover the isothermal, compressible N–S equa-
tions, approximating the incompressible N–S equations with second order error in Mach number (Ma) [10]. In particular, in
the standard LB model, the fluid pressure is represented by the density, and thus the resulting continuity equation departs
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from the one pertaining to the incompressible flow. Such violation of the incompressibilitymay produce some serious errors
in simulating incompressible flow [13–16].

To avoid or reduce such discrepancy of the standard LB model, many attempts have been devoted to building an incom-
pressible LB model. By assuming the density relating to the fluid momentum to be a constant, an incompressible LB model
for steady flow is designed by Zou et al. [14]. Similarly, an incompressible LB model, in which the fluid density ρ is split up
into a constantmean density ρ0 and a small fluctuation δρ and then the effect of δρu is neglected, is proposed by He and Luo
(notated as He–Luo model) [15]. Although it is claimed that the He–Luo model is applicable for both steady and unsteady
flow, the density fluctuation in this model is related to the pressure and the compressibility effect remains second order
in Ma for unsteady incompressible flow [10]. Differing from all the above-mentioned LB models, the fluid density in Guo’s
model is prescribed to be a constant and the pressure is independent of the density [13], therefore, the requirements of the
incompressibility are satisfied. However, an approximation relating to the deviatoric stress tensor is introduced during the
pressure computation in Guo’s LB model, which may affect the accuracy in the region of high deviatoric stress.

Despite of the demerits of abovemodels, accurate results are obtained when applying them to some certain incompress-
ible flow [13–18], such as the fully developed flow in a duct or a pipe, lid-driven cavity flowwith low Reynolds number (Re)
and flow over obstacles. However, when referring to flow with severe convection, such as the lid-driven cavity flow with
higher Re, the visible discrepancies of the velocity near the no-slip boundary are reported in both 2D and 3D LB simula-
tions [19–25].

Inspired by Guo’s model, an alternative 3D LB model for incompressible flow is constructed to better cope with the in-
compressibility conditions and the approximation errors in regions with high deviatoric stress. From the Chapman–Enskog
analysis, it is reasonable to conclude that the specific form of the relevant macroscopic equations depends on the moments
of the EDF. By assuming the pressure to be independent of the density and setting the fluid density to be a constant, the
moments of the distribution function are modified directly. Then, Grad’s Hermite tensorial polynomials [26,27] are utilized
to derive the continuous expression of the EDF. Applying the discrete velocity vectors of the D3Q19 and D3Q27 lattice mod-
els [28,29], the continuous EDF is discretized. Afterwards, the pressure formula, which is alternatively different from other
LBmodels, is designed from themodified second order moment of the distribution function. Moreover, considering the spe-
cific expression of the discrete EDF, the pressure formula is further revised to improve the convergence properties of the
present model. To validate the present model, the simulations of the backward-facing step flow and the 3D lid-driven cavity
flow are performed, and the simulated results are compared with the reference solutions in the literature [30–33].

2. The 3D incompressible LB model

In this section, some common LBM features, the governing equation and the discrete velocity vectors of the D3Q19 lattice
model, are given first. Then the theoretical properties of the standard LB model, the He–Luo model and Guo’s model are
presented. Finally, the detailed derivations of the present 3D incompressible LB model are provided.

2.1. The lattice Boltzmann equation

The lattice Boltzmann equation is

fα(x + ξαdt, t + dt)− fα(x, t) = −
1
τ

[fα(x, t)− f (0)α (x, t)] (1)

where τ is the single dimensionless relaxation parameter of the BGK collision operator [34]; fα(x, t) and f (0)α (x, t) are the
discrete distribution function and its equilibrium version, respectively. The BGK collision operator is adopted in all the LB
simulations in this work.

The discrete velocity vectors ξα in theD3Q19 lattice,which iswidely adopted in the 3D LB simulations [24,29], are defined
as below:

ξα =


(0, 0, 0), α = 0
(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, α = 1–6
(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, α = 7–18

(2)

where the lattice constant c = dx/dt , and dx, dt are themesh size and time step, respectively. The relatingweight coefficient
wα is

wα =

1/3 α = 0
1/18 α = 1–6
1/36 α = 7–18.

(3)

2.2. The standard LB model

In the standard model [35], the expression of the discrete EDF f (0)α is determined as

f (0)α = ρwα


1 +

ξα • u
RT

+
(ξα • u)2

2(RT )2
−

u2

2RT


(4)
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