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a b s t r a c t

This paper is concerned with developing an efficient regularized smoothing Newton-type
algorithm for quasi-variational inequalities. The proposed algorithm takes the advantage
of newly introduced smoothing functions and a non-monotone line search strategy. It is
proved to be globally and locally superlinearly/quadratically convergent under suitable
assumptions. Numerical results demonstrate that the algorithm generally outperforms the
existing interior point method and semismooth method (Facchinei, et al. 2014).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the finite-dimensional quasi-variational inequality, denoted by QVI, i.e., find a point x∗
∈ K(x∗)

such that

F(x∗)T (y − x∗) ≥ 0, ∀y ∈ K(x∗), (1.1)

where F : ℜ
n

→ ℜ
n is a (point-to-point) mapping and K : ℜ

n ⇒ ℜ
n is a (point-to-set) mapping with closed, convex images

and

K(x) := {y ∈ ℜ
n
|g(y, x) ≤ 0},

where g : ℜ
n
×ℜ

n
→ ℜ

m. We assume that gi(·, x) is convex and continuously differentiable onℜ
n, for each x ∈ ℜ

n and each
i = 1, . . . ,m. In particular, when the set K is independent of x, QVI (1.1) reduces to the well-known variational inequality,
denoted by VI, i.e., determine a point x∗ in a closed convex subset K of ℜn such that

F(x∗)T (y − x∗) ≥ 0, ∀y ∈ K .

The reader is referred to [1,2] and the references therein.
QVI (1.1) was firstly introduced by Bensoussan and Lions [3]. This model has important applications in generalized Nash

games, mechanics, economics, statistics, transportation, and biology (see, for example, [1,4–6]). Among them, one of the
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main task is to investigate how to solve QVI (1.1). In this paper, we mainly focus on the numerical reconstruction method
based on the KKT conditions of QVI (1.1). Recently, an interior point method was proposed for solving QVI (1.1) [6], which
includes many classes of QVI (1.1). It established a global convergence result based on a potential reduction method. Very
recently, a so called LP-Newton method was proposed for solving the nonsmooth systems of equations with nonisolated
solutions [7,8]. [4] further investigated the methods given in [7,8] and analyzed the locally fast convergence for generalized
Nash equilibrium problems as special cases of QVI (1.1). Lately, a semismooth Newton method was proposed for solving
quasi-variational inequalities [5]. By exploiting Burmeister–FischerNCP-function (see (2.3))which is useful for reformulating
theKKT conditions of QVI (1.1), it obtained global convergence and locally superlinear/quadratic convergence result for some
important classes of quasi-variational inequality problems. Very encouraging numerical results were also reported in [5].

Nearly thirty years of time, smoothing Newton-type algorithm has been extensively applied to solving various optimiza-
tion problems (see, for example, [9–17]). The main idea of this class of algorithms is to reformulate the problem concerned
as a family of parameterized smooth equations and then to solve the smooth equations approximately by using Newton-
type methods at each iteration. By driving the parameter to zero, one expects that a solution to the original problem can be
found. It should be noted that this class of methods, in essence, is an iterative method. Two key points of iterative method
are to find a direction and a stepsize. So finding an appropriate direction and a stepsize plays a crucial role in designing a
good iterative method.

It is well known that smoothing Newton-type algorithm has the following distinguishing features. Firstly, the algorithm
can start from an arbitrary initial point. Secondly, the algorithm needs to solve only one linear system of equations and
performs only one suitable line search at each iteration. Thirdly, it possesses not only good numerical performance, but also
the global and local superlinear/quadratic convergence under some assumptions.

Based on significant advantages stated above, a regularized smoothing Newton-type algorithm is proposed in this paper
and applied to solving QVI (1.1) with a new family of smoothing functions. By regularization, we do improve the conditions
that nonsingularity of Jacobian matrix JH(zk) (see (2.7)) holds compared with Theorem 3 given in [6] (see Theorem 3.1 for
details). Furthermore, we show that the proposed algorithm is globally and locally superlinearly/quadratically convergent
under some suitable assumptions. We also report some preliminary numerical results.

The rest of this paper is organized as follows. In the next section, QVI (1.1) is reformulated as a system of parameterized
smooth equations with a new family of smoothing functions, and some essential properties are given with respect to the
new family of smoothing functions. In Section 3, we propose a regularized smoothing Newton-type algorithm for solving
the KKT system of QVI (1.1) and analyze the solvability of corresponding Newton equations. In Section 4, we discuss the
convergence of the proposed algorithm. In Section 5, we report the preliminary numerical results. Some conclusions are
drawn in Section 6.

In the following, we introduce the notations that are used. The superscript T denotes the transpose. ℜ
n
+

(respec-
tively, ℜn

++
) denotes the nonnegative (respectively, positive) orthant in ℜ

n. We denote I = {1, 2, . . . ,m}. For any vec-
tors u, v ∈ ℜ

n, we write (uT , vT )T as (u, v) for simplicity. For any function F : ℜ
m

→ ℜ
m, if F is differentiable at x,

then JF(x) denotes the Jacobian matrix of F at x and ∇F(x) denotes the transposed Jacobian. Given a smooth mapping
g : ℜ

n
× ℜ

n
→ ℜ

m, (y, x) → g(y, x),∇yg(y, x) denotes the transpose of the partial Jacobian of g with respect to the
y-variables. If F is locally Lipschitz continuous around x, then ∂F(x) denotes Clarke’s generalized Jacobian of F at x. For any
a, b ∈ ℜ+, a = O(b) (or a = o(b)) means lim supb→0

a
b < +∞ (or lim supb→0

a
b = 0). While k denotes the iterative index,

the set of all iterative indices is written as J, i.e., J := {0, 1, 2, . . .}.

2. Smoothing reformulation for quasi-variational inequalities

From the differentiability of function g(·, x), the Karush–Kuhn–Tucker (KKT) conditions of QVI (1.1) are in the following
form:

F(x)+ ∇yg(x, x)λ = 0,

λ ≥ 0, g(x, x) ≤ 0, and λTg(x, x) = 0,
(2.1)

where λ ∈ ℜ
m are Lagrange multipliers. From Theorem 1 of [6], it is not difficult to see that x∗

∈ K(x∗) is a solution of QVI
(1.1) if and only if there exists λ∗

∈ Rm such that (x∗, λ∗) satisfies the KKT conditions (2.1).
Let L(x, λ) := F(x)+ ∇yg(x, x)λ, h(x) := g(x, x), then (2.1) can be equivalently rewritten as

L(x, λ) = 0,
h(x)+ w = 0,

λ ≥ 0, w ≥ 0, and λTw = 0,
(2.2)

where w ∈ ℜ
m are slack variables. It is easy to see that (2.2) contains a complementarity system. There may be a certain

degree of difficulty in solving (2.2) directly. From [2] we can see that the complementarity system can be replaced by
NCP-function. For NCP-function, the normal definition is given as follows.

Definition 2.1. Function ψ : ℜ
2

→ ℜ is called a NCP-function, if for any (a, b)T ∈ ℜ
2, ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0,

ab = 0.
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