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a b s t r a c t

A nested splitting conjugate gradient (NSCG) iterative method and a preconditioned NSCG
(PNSCG) iterative method are presented for solving the generalized Sylvester equation
with large sparse coefficient matrices, respectively. Both methods are actually inner/outer
iterations, which employ the CG-like method as inner iteration to approximate each outer
iteration, while each outer iteration is induced by a convergent and symmetric positive
definite splitting of the coefficient matrices. Convergence conditions of both methods are
studied in depth and numerical experiments demonstrate the efficiency of the proposed
methods. Moreover, experimental results show that the PNSCG method is more accurate,
robust and effective than the NSCG method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix equations are one of themost interesting and intensively studied classes of mathematical problems and play vital
roles in applications, such as image processing, control theory and model reduction; see [1–3] and their references. There
are many results about various type of matrix equations, for example see [4–27].

In this paper, we consider the following generalized Sylvester equation

AXB + CXD = E, (1.1)

where A, C ∈ Rn×n, B,D ∈ Rm×m and E ∈ Rn×m are given, large sparse and real matrices. Based on the Kronecker product,
(1.1) can be written as

(B⊤
⊗ A + D⊤

⊗ C)vec(X) = vec(E), (1.2)

where ⊗ denotes the Kronecker product, i.e., A ⊗ B = (aijB) and

vec(X) = (x11, x21, . . . , xn1, x12, x22, . . . , xn2, . . . , xnm)⊤ ∈ Rnm.

Here, the superscript ‘⊤’ denotes the transpose of a vector or a matrix. As is well known, the matrix equation (1.1) has a
unique solution if and only if B⊤

⊗A and−D⊤
⊗C possess no common eigenvalues and the unique solution can be obtained

by means of the inversion of the nm × nm matrix A = B⊤
⊗ A + D⊤

⊗ C .
Many results have been obtained about the matrix equation (1.1). For example, Ding, Liu and Ding [12] presented a

gradient based and a least-squares based iterative algorithms for solving the generalized Sylvester equation by using the
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hierarchical identification principle. Zhang and Cai [13] constructed a parameter iterative method for solving large gener-
alized Sylvester equation. Bao, Lin and Wei [14] proposed Galerkin and minimal residual methods for iteratively solving
generalized Sylvester equation of the form AXB − X = C , which used the Krylov subspace methods. In [19], Bai gave a Her-
mitian and skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with
non-Hermitian and positive definite/semi-definite matrices. A software package had been developed by Gardiner et al. [15]
to solve efficiently the Sylvester-type matrix equation AXB⊤

+ CXD⊤
= E. And a transformation method is used, which

employed the QZ algorithm to structure the equation in such a way that it can be solved columnwise by a back substitution
technique. This method is an extension of the Bartels–Stewart method and the Hessenberg–Schur method.

Our purpose in the present paper is twofold. Firstly, we present the nested splitting conjugate gradient (NSCG) iterative
method for solving the generalized Sylvester equation (1.1) by using the symmetric and skew-symmetric splitting of the
matrices A, B, C and D. This method was first proposed in [16] for solving system of linear equations Ax = b, then was
extended to solve the matrix equation AXB = C and AX + XB = C , respectively, see [17,18]. For more detail on this method,
we refer to [28,29] and references therein. Moreover, based on the NSCG method, we propose a preconditioned nested
splitting conjugate gradient (PNSCG) iterative method.

The organization of this paper is as follows. In Section 2, we present some necessary notations and useful lemmas as well
as a brief description of the NSCG method. In Section 3, we give the NSCG method for the generalized Sylvester equation
AXB+CXD = E and analyze its convergence properties. In Section 4, we propose a preconditioned NSCGmethod and give its
convergence conditions. The numerical results about the proposed methods are shown and discussed in Section 5. Finally,
in Section 6, we end the paper by some concluding remarks.

2. Preliminaries

In this section, we recall some necessary notations and useful results, which will be used in the following section.
A matrix A ∈ Rn×n is said to be symmetric if A⊤

= A, and symmetric positive definite if it is symmetric and satisfies
x⊤Ax > 0 for all x ∈ Rn

\ {0}. Let A ∈ Rn×n be a given matrix and B, C ∈ Rn×n satisfy A = B − C . Then A = B − C is
called a splitting of the matrix A if B is nonsingular. The splitting A = B − C is called a convergent splitting if ρ(B−1C) < 1;
a symmetric splitting if B is a symmetric matrix; a symmetric positive definite splitting if B is a symmetric positive definite
matrix; and a contractive splitting if ∥B−1C∥ < 1 for some matrix norm.

In the remainder of this paper, we use the following notations. For X = (xij), Y = (yij) ∈ Rn×m, we define the following
inner product ⟨X, Y ⟩ = tr(X⊤Y ) =


i,j xijyij, where tr(·) denotes the trace. We use λ(A), λmax(A), λmin(A), ∥A∥2, ∥A∥F and

In to denote the eigenvalue, the maximum eigenvalue, the minimum eigenvalue, the spectral norm, the Frobenius norm of a
matrix A ∈ Rn×n and the identity matrix with dimension n, respectively. Note that ∥·∥2 is also used to represent the 2-norm
of a vector. For a nonsingular matrix H , we denote by κ(H) = ∥H∥2∥H−1

∥2 its Euclidean condition number. And for a
symmetric positive definite matrix H , we define the ∥ · ∥H norm of a vector x ∈ Rn as ∥x∥H =

√
x⊤Hx. Then the induced

∥ · ∥H norm of a matrix A ∈ Rn×n is defined as ∥A∥H = ∥H
1
2 AH−

1
2 ∥2. In addition, it holds that ∥Ax∥H 6 ∥A∥H∥x∥H ,

∥A∥H 6
√

κ(H)∥A∥2 and ∥I∥H = 1. Furthermore, for a matrix X ∈ Rn×m and the vector vec(X) ∈ Rnm, we have the
following relationship, that is, ∥X∥F = ∥vec(X)∥2.

Lemma 2.1 ([30]). Let A, B ∈ Rn×n be two symmetric matrices. Then

λmax(A + B) 6 λmax(A) + λmax(B),
λmin(A + B) > λmin(A) + λmin(B).

Lemma 2.2 ([31]). Let A, B ∈ Rn×n, λ and µ be the eigenvalues of A and B, x and y be the corresponding eigenvectors,
respectively. Then λµ is an eigenvalue of A ⊗ B corresponding to the eigenvector x ⊗ y.

Lemma 2.3 ([32]). Let A ∈ Rn×n be a symmetric positive definite matrix. Then for all x ∈ Rn, we have ∥A
1
2 x∥2 = ∥x∥A and

λmin(A)∥x∥A 6 ∥Ax∥2 6


λmax(A)∥x∥A.

In [16], Axelsson, Bai and Qiu proposed an efficient iteration method for solving the system of linear equations

Ax = b, (2.1)

where A ∈ Rn×n is a large sparse nonsingularmatrix, x, b ∈ Rn. Let A = B−C be a symmetric positive definite splitting of the
coefficient matrix A and assume that the splitting satisfies the condition ρ(B−1C) < 1. Then the system of linear equations
(2.1) is equivalent to the fixed-point equation

Bx = Cx + b.

Given a starting vector x(0)
∈ Rn, suppose thatwehave computed approximations x(1), x(2), . . . , x(l−1) to the solution x∗

∈ Rn

of the system (2.1). Then the next approximation x(l) may be defined as either an exact or an inexact solution of the system
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