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a b s t r a c t

The non-isothermal crystallization of a hollow cylindrical polymer sample with radial
symmetry is studied. Three radial cooling strategies are considered: cooling from inside
(outward cooling), cooling from outside (inward cooling), and cooling from both sides
(double cooling). When the initial and boundary conditions are axisymmetric, the
crystallization problem can be reduced to a one-dimensional formulation where a free
boundary problem framework can be used. The solution is approximated by appropriate
one-phase Stefan problems for which the analytical solution is provided. These results
are compared to direct numerical simulations of the crystallization process, finding an
excellent agreement in the approximation of the time-evolution of the crystallization
front, the temperature distribution and the crystallization time. In a second part, the
corresponding optimal control problems are formulated for a cost functional assessing
the use of low temperatures and the duration of the crystallization process. Analytical
expressions of the approximated optimal controls are derived for each cooling strategy. In
particular, the double cooling case presents special difficulties thatwe are able to overcome
by extending the technique that we previously developed for the case of homogeneous
rectangular samples.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Designing the optimal cooling strategy is a core problem in polymer crystallization [1]. As an industrial material
manufacture process, the main requirements of polymer production industry are the reduction of the processing time and
the restriction of the use of excessively low cooling temperatures, which are very expensive to reach and to maintain. These
two interests compete with each other: shortening the duration requires low temperatures, and avoiding low temperatures
makes the duration longer. Of great interest for industry is thus to find the optimal control of the cooling temperature applied
to the polymer melt which balances the production costs.

In rectangular samples with spatially homogeneous cooling objects, the optimal applied temperature has been found for
the two possible cooling strategies: double cooling, when both sides of the sample are cooled under the critical freezing
threshold, and single cooling, when only one side of the sample is cooled (and a zero-flux boundary condition is used at the
other side). In both cases, the optimal cooling strategy consists in applying a constant temperature, the same one at both
ends in the double cooling case [2,3]. This study was performed by reducing the rectangular problem to a one-dimensional
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Fig. 1. From cylindrical geometries to the axisymmetric one-dimensional formulation, using thermally homogeneous cooling objects. (A) Outward cooling,
(B) inward cooling, (C) double cooling, (D) radial symmetry, (E) crystallinity y(r, t) as a one-dimensional spatial function of the radius r at a time t in the
double cooling case.

(1D) problem, on the basis of the spatial homogeneity of the material and the boundary and initial conditions. There, the
crystallizationprocess is describedby identifying the regionwhere crystallization takes placewith amoving free boundary. A
free boundary problem (FBP) framework, presented in [4], allowedus to derive analytical approximations of the temperature
field and the time-evolution of the position of the crystallization front, as well as importantmagnitudes such as the duration
of the crystallization process.

Predicting cooling duration and temperature field are critical for maintaining optimum productivity costs [5]. The
question arises as to whether the efficiency can be improved by using higher dimensional geometries (e.g. two-dimensional
samples with axial symmetry, two-dimensional rectangular samples with inner contacts, etc.). A natural extension of one-
dimensional studies consists in considering cylindrical samples, as they can take profit of the radial nature of heat transfer
in two dimensions. Cylindrical samples are indeed used in polymer crystallization [1,5,6]. On the other hand, cylindrical
samples are of particular interest from the mathematical viewpoint, due to the fact that, in the case of axial symmetry, they
lead to one-dimensional problems.

The present paper extends these previous studies to the case of cylindrical samples in which a hollow cylinder of internal
radius rc > 0 and external radius ra > rc is cooled under its critical freezing value Tf . The three possible strategies are
considered: the outward cooling strategy, which consists in applying a cooling cylindrical object of radius rc to the interior
of the sample, the inward cooling strategy, where the sample is cooled from outside with a larger hollow cylinder of inner
radius ra and outer radius larger than ra, and the double cooling strategy, which consists in combining both strategies. See
Fig. 1. In each case, the temperature of the cooling objects is considered time-dependent and denoted by uc(t) and/or ua(t),
according to the side(s) of the sample towhich the corresponding cooling object is applied. For simplicity, the cooling objects
are assumed thermally homogeneous so that there is no spatial variation in the applied temperature with respect to the
vertical z-axis and the angular coordinate (azimuth) ψ . Uniformity along the z-axis and radial symmetry are also assumed
for the rest of the parameters and the boundary and initial conditions. The resulting geometry allows then to reformulate
the problem as a 1D problem for the radial spatial variable r ∈ [rc, ra]. The emergence of a crystallization front is expected,
which will allow us to use the FBP framework.

The model consists of two non-linear partial differential equations for the degree of crystallinity y(r, t), defined as the
mean volume fraction of the space occupied by crystals, and the temperature field T (r, t), coupled by means of the rate
functions of nucleation and growth bN(T ) and bG(T ), the function of starting of nucleation κ(y) = (1− y)2, and the function
of aggregation and saturation of nuclei β(y) = y(1 − y):

yt(r, t) = β(y(r, t))bG(T (r, t))+ v0κ(y(r, t))bN(T (r, t)), (1)

Tt(r, t) = σ


Trr(r, t)+

1
r
Tr(r, t)


+ aGβ(y(r, t))bG(T (r, t)), (2)

for (r, t) ∈ (rc, ra) × (0, τ ), where τ is the time at which the cooling process is stopped. Subindexes t and r in yt , Tt , Tr
and Trr denote first-order (resp. second-order) partial derivative with respect to the corresponding variable t or r . Let us
stress that the heat operator is expressed here in polar coordinates and that the term depending on the angular coordinate
ψ does not appear in Eq. (2) because the boundary and initial data are also axisymmetric. The spatial lengths are defined
as l = ra − rc , the radial length of the sample, and lz , the height of the sample along the z-axis. This model was originally
introduced by Capasso in [7] (see also [1]).
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