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a b s t r a c t

The inherent heterogeneities of many geophysical systems often give rise to fast and slow
pathways to water and chemical movement. One approach to model solute transport
through such media is by fractional diffusion equations with space–time dependent
variable coefficients. Many physical processes appear to exhibit fractional-order behavior
that may vary with time, or space, or space and time. The theory of pseudodifferential
operators and equations has been used to deal with this situation. In this paper we use
a fractional Darcy’s law with variable order Riemann–Liouville fractional derivatives, this
leads to a new variable-order fractional diffusion equation with variable coefficients.

In this paper we consider a new two-dimensional variable-order fractional percolation
equation with variable coefficients. An alternating direct method for the two-dimensional
variable-order fractional percolation equation is proposed. Stability and convergence of the
implicit alternating direct method are discussed. Finally, some numerical results are given.
The numerical results demonstrate the effectiveness of the methods. These techniques
can be used to simulate three-dimensional variable-order fractional partial differential
equations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Seepage flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics,
groundwater dynamics and fluid dynamics in porous media (see [1–3]). The traditional partial differential equations for
single phase isothermal seepage flow under the hypotheses of continuity and Darcy’s law can be written as
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where (x, y) ∈ Ω, A and B are the percolation coefficients along the x and y direction, respectively; p is the pressure; v is
velocity; h = h(x, y, t) is the source term; and Ω denotes the percolation domain. He [3] proposed the following modified
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Darcy’s law or generalized Darcy’s law with Riemann–Liouville fractional derivatives:

qx = A
∂α1p
∂xα1

, qy = B
∂α2p
∂yα2

, 0 < α1, α2 < 1. (2)

Here, as usual, the Riemann–Liouville fractional derivative is defined as (see [4])
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where 0 < α < 1. Under the simplifying assumption of continuity of seepage flow, we have the following fractional
differential equation:
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Many physical processes appear to exhibit fractional-order behavior thatmay varywith time, or space, or space and time.
The theory of pseudodifferential operators and equations has been used to deal with this situation (see [5–7]). In this paper
we will consider a more generalized Darcy’s law with variable order Riemann–Liouville fractional derivatives:
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, 0 < α(x, y), β(x, y) < 1. (5)

Here, the variable order Riemann–Liouville fractional derivative is defined as (see [6,8])
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where 0 < α(x, y) < 1. So the more general equation for seepage flow can be expressed as follows:
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The inherent heterogeneities of many geophysical systems often give rise to fast and slow pathways to water and chemical
movement. One approach to model solute transport through such media is by fractional diffusion equations with a space–
time dependent variable coefficient. Moreover, the equation in non-homogeneous porous media can be written as follows:
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where (x, y) ∈ Ω, A(x, y) = vA, B(x, y) = vB, f (x, y, t) = vh(x, y, t). The above equation forms the focus of this paper
and it is known as the two-dimensional variable order fractional percolation equation.

Many researchers have proposed various numerical methods to solve space or time fractional partial differential
equations during the past decade (see [9–12]). Liu et al. [13] simulated Lévy motion with α-stable densities using a FADE.
Meerschaert et al. [14] presented finite difference methods to solve the two-side space-fractional differential equations. Liu
et al. [15] proposed an approximation of the Lévy–Feller advection–dispersionprocess by a randomwalk and finite difference
method, and discussed its stability and convergence. Liu et al. [16] introduced numerical methods and analysis for a class
of fractional advection–dispersion models. Liu et al. [17] proposed a new numerical simulation for two-dimensional Riesz
space fractional diffusion equations with a nonlinear reaction term and discussed the stability and convergence of the new
numerical method. Liu et al. [18] studied numerical methods for solving the multi-term time fractional wave equations.
Meerschaert et al. [19] introduced stochastic models for fractional calculus. Ervin et al. [20] and Fix et al. [21] developed
finite elementmethods for certain one-dimensional partial differential equationswith constant coefficients in the fractional
derivative terms. Recently, numerical methods for the fractional partial differential equations and the time–space fractional
Fokker–Planck equations have been considered by some authors (see [22–25]). Lin et al. [26] develop modified alternating
directionmethods for solving a two-dimensional non-continuous seepage flowwith fractional derivatives in uniformmedia.
Lin et al. [6] and Zhuang et al. [8] develop numerical methods for solving the variable order fractional partial differential
equations. But, numerical methods for the two-dimensional variable order fractional diffusion equation with variable
coefficients are quite limited and difficult to construct. This motivates us to consider a computationally effective implicit
alternating direct method for the two-dimensional variable order fractional diffusion equation with variable coefficients.
The main contributions of this paper are based on existing two-dimensional fractional percolation equation with constant
coefficients, we use a fractional Darcy’s lawwith variable order Riemann–Liouville fractional derivatives, this leads to a new
variable-order fractional diffusion equation with space–time dependent variable coefficients. A new implicit alternating
directmethod for the two-dimensional variable-order fractional percolation equation is proposed. Stability and convergence
of the implicit alternating direct method are proved. Some numerical results are given. The numerical results demonstrate
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