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a b s t r a c t

In this paper,we present a three-step iterativemethod of convergence order five for solving
systems of nonlinear equations. The methodology is based on the two-step Homeier’s
method with cubic convergence (Homeier, 2004). Computational efficiency in its general
form is discussed and a comparison between the efficiency of proposed technique and
existing ones is made. The performance is tested through numerical examples. Moreover,
theoretical results concerning order of convergence and computational efficiency are
verified in the examples. It is shown that the present method has an edge over existing
methods, particularly when applied to large systems of equations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The construction of iterative methods for approximating the solution of systems of nonlinear equations is an important
and interesting task in numerical analysis and applied scientific branches.With the advancement of computers, the problem
of solving systems of nonlinear equations by numerical methods has gainedmore importance than before. This problem can
be precisely stated as to find a vector α = (α1, α2, . . . , αn)

t such that F(α) = 0, where F(x) : D ⊆ Rn
→ Rn is the

given nonlinear system, F(x) = (f1(x), f2(x), . . . , fn(x))t and x = (x1, x2, . . . , xn)t . One of the basic procedures for solving
nonlinear equations is the classical Newton’s method [1,2] which converges quadratically under the conditions that the
function F is continuously differentiable and a good initial approximation x(0) is given. It is defined by

x(k+1)
= x(k)

− F ′(x(k))−1F(x(k)), k = 0, 1, 2, . . . ,

where F ′(x)−1 is the inverse of first Fréchet derivative F ′(x) of the function F(x). It is straightforward to see that this method
requires the evaluations of one function, one first derivative and one matrix inversion per iteration.

In order to improve the order of convergence of Newton’s method, many modifications have been proposed in the
literature; for example, see [3–14] and references therein. In particular, Homeier [8] has developed a two-step cubically
convergent method, which is given by

y(k)
= x(k)

−
1
2
F ′(x(k))−1F(x(k)),

x(k+1)
= x(k)

− F ′(y(k))−1F(x(k)). (1)

Per iteration, this method requires the evaluations of one function, two first order derivatives and two matrix inversions.
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A well-known fact in numerical analysis is that the construction of higher order iterative methods is a futile exercise
unless they have low computational cost. Thus, the main goal and motivation in developing iterative methods is to achieve
as high as possible convergence order requiring as small as possible the evaluations of functions, derivatives and inverse
operators. With this aim we here propose a three-step method of fifth order convergence based on Homeier’s scheme (1).
The scheme of present contribution is as simple as the method (1) but with an additional advantage that it possesses high
computational efficiency, particularly for large systems.

This paper is outlined as follows. In Section 2, the fifth order scheme is developed and its convergence analysis is studied.
In Section 3, the computational efficiency of new method is discussed and is compared with Homeier’s (1) and other well-
known existing methods. Various numerical examples are considered in Section 4 to show the consistent convergence
behavior of the method and to verify the theoretical results. Section 5 contains the concluding remarks.

2. The method and its convergence

Consider Homeier’s method (1), which is now defined as

y(k)
= x(k)

−
1
2
F ′(x(k))−1F(x(k)),

z(k)
= x(k)

− F ′(y(k))−1F(x(k)). (2)

In what follows, we construct the method to obtain the approximation x(k+1) to a solution of F(x) = 0 by considering the
scheme in the following way:

y(k)
= x(k)

−
1
2
F ′(x(k))−1F(x(k)),

z(k)
= x(k)

− F ′(y(k))−1F(x(k)),

x(k+1)
= z(k)

− [aF ′(y(k))−1
+ bF ′(x(k))−1

]F(z(k)) (3)

where a and b are some parameters. In order to explore the convergence property of (3), we recall the following result of
Taylor’s expansion on vector functions (see [1]).

Lemma 1. Let F : D ⊆ Rn
→ Rn be a p time Fréchet differentiable in a convex set D ⊆ Rn and then for any x, h ∈ Rn, the

following expression holds:

F(x + h) = F(x) + F ′(x)h +
1
2!

F ′′(x)h2
+

1
3!

F ′′′(x)h3
+ · · · +

1
p!

F (p−1)(x)hp−1
+ Rp, (4)

where

∥Rp∥ 6
1
p!

sup
06t61

∥F (p)(x + th)∥ ∥h∥p and hp
= (h, h,

p
· · · ·, h).

We are in a condition to prove the following theorem:

Theorem 1. Let the function F : D ⊆ Rn
→ Rn be sufficiently differentiable in a convex set D containing the zero α of F(x). Sup-

pose that F ′(x) is continuous and nonsingular in α. Then, the sequence {x(k)
}k≥0 (x(0)

∈ D) obtained by using the method (3) con-
verges to α with convergence order five provided a = 2 and b = −1.

Proof. Taylor’s expansion (4) for F(x) about x(k) is

F(x) = F(x(k)) + F ′(x(k))(x − x(k)) +
1
2!

F ′′(x(k))(x − x(k))2 +
1
3!

F ′′′(x(k))(x − x(k))3 + O(∥x − x(k)
∥
4). (5)

Let e(k)
= x(k)

− α. Then setting x = α and using F(α) = 0 in (5), we obtain

F(x(k)) = F ′(α)[e(k)
+ A2(e(k))2 + A3(e(k))3 + O((e(k))4)], (6)

where Ai =
1
i!Γ F (i)(α) ∈ Li(Rn, Rn), Γ = F ′(α)−1 and (e(k))i = (e(k), e(k),

i
· · · ·, e(k)), e(k)

∈ Rn.
Also,

F ′(x(k)) = F ′(α)[I + 2A2e(k)
+ 3A3(e(k))2 + O((e(k))3)]. (7)

Then,

F ′(x(k))−1
= [D(e(k))

−1
+ O((e(k))3)]Γ ,

where D(e(k)) = I + 2A2e(k)
+ 3A3(e(k))2.
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