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a b s t r a c t

In this paper 1D parabolic systems of two singularly perturbed equations of reaction–
diffusion type are examined. For the time discretization we consider two additive (or split-
ting) schemes defined on a uniform mesh and for the space discretization we use the
classical central difference approximation defined on a Shishkin mesh. The uniform con-
vergence of both the semidiscrete and the fully discrete problems is proved. The additive
schemes are used to solve a test problem, and the results obtained with these schemes
and the standard discretization using the backward Euler method are compared. Also, nu-
merical results are presented in the case of systems of three equations. All the numerical
results show the advantage in computational cost of the additive schemes compared to the
standard discretization.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are interested in the numerical approximation of parabolic singularly perturbed reaction–diffusion
systems of typeLεu ≡

∂u
∂t
(x, t)+ Lx,εu(x, t) = f(x, t), (x, t) ∈ Q = Ω × (0, T ],

u(0, t) = 0, u(1, t) = 0, ∀ t ∈ [0, T ], u(x, 0) = 0, ∀ x ∈ Ω̄,

(1)

whereΩ = (0, 1) and the spatial differential operator is defined by

Lx,ε ≡ Dε

∂2

∂x2
+ A, Dε =


−ε1

−ε2


,A =


a11(x, t) a12(x, t)
a21(x, t) a22(x, t)


. (2)

We denote by Γ0 = {(x, 0) | x ∈ Ω}, Γ1 = {(x, t) | x = 0, 1, t ∈ [0, T ]}, Γ = Γ0 ∪ Γ1, ε = (ε1, ε2)
T the vectorial

singular perturbation parameter and we assume that 0 < ε1 ≤ ε2 ≤ 1. The components of the right hand side function
f(x, t) = (f1(x, t), f2(x, t))T and the reaction matrix A are assumed to be sufficiently smooth functions. Also, we suppose
that the following conditions on A are satisfied:

ai1 + ai2 ≥ α ≥ 0, aii > 0, i = 1, 2, (3)
aij ≤ 0, if i ≠ j. (4)
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Note that if (3) is not satisfied, we can consider the transformation v(x, t) = u(x, t)e−α0t with α0 > 0 sufficiently large, and
therefore condition (3) will hold in the new problem. We also assume the compatibility conditions

∂ i+kf
∂xi∂tk

(0, 0) = 0,
∂ i+kf
∂xi∂tk

(1, 0) = 0, 0 ≤ i + 2k ≤ 4,

which guarantee that u ∈ C6,3(Q̄ ) (the spatial partial derivatives of the solution are continuous up to sixth order and the
time partial derivatives are continuous up to third order). They are an extension of the compatibility conditions for the
scalar case [1]. This regularity, which is slightly higher than one would expect, is required for the analysis of the asymptotic
behavior of the semidiscrete problem given below.

Singularly perturbed systems of the class (1) arise, for example, in mathematical models in fractured porous media [2].
Since the diffusion parameters ε1 and ε2 can take arbitrary small values, the solution of problem (1), in general, has a
multiscale character [3] and therefore it is convenient to construct uniformly convergent methods (i.e., convergent for any
value of the singular perturbation parameters) for its numerical approximation (see [4–6] for a general survey).

The numerical approximation of singularly perturbed parabolic systems of reaction–diffusion type has been analyzed
in both the cases of two equations [7,3] and an arbitrary number of equations [8,9]. In these papers, the time variable is
discretized with the Euler method on a uniformmesh and the space variable with the central difference approximation on a
Shishkinmesh. Some advances have beenmade in constructing higher order approximations to the solution of problem (1);
for example, in [10] a high order difference approximation via identity expansions (HODIE) was proposed to approximate
the space variable instead of the classical central difference approximation and in [11] the Crank–Nicolsonmethodwas used
for the time approximation.

The components of the discrete solution of all these numerical methods are coupled at each time level and then a
high computing time is required when one considers systems with an arbitrary number of equations or multidimensional
problems (see Section 4 for a further explanation). In the case of steady problems, we can cite the iterative scheme proposed
by Matthews et al. [12] to solve this type of systems and the paper by Stephens and Madden [13], where the uniform
convergence of the Schwarz domain decomposition method is analyzed. Up to our knowledge, additive (or splitting)
methods [14,15],which are designed for amore efficient computational implementation, have not been used to approximate
singularly perturbed systems. Additive schemes have a considerable interest in the case of time-dependent vector problems
because they can be designed so that the components of the discrete solution are decoupled at each time level.

In this paper we consider two additive schemes define on a uniform mesh to approximate the time variable of problem
(1) and the uniform convergence of the solution of the semidiscrete problem to the solution of the continuous problem is
proved in Section 2 (see [16] for a detailed discussion in the case of a scalar parabolic problem). In addition, the structure
of the solution of such problems is established by considering an appropriate decomposition. The analysis, which is based
on an inductive argument, is given in an Appendix because it is quite technical. For the sake of completeness, the standard
discretization with the Euler method is also considered in our analysis because the asymptotic behavior of its solution has
not been established previously in the literature.

In Section 3 the semidiscrete problems associated to the additive schemes are discretized by using the central difference
approximation on a piecewise uniformmesh of Shishkin type (see, for example, [17,3]) and the uniform convergence of the
fully discrete schemes trivially follows from the papers dealing with the steady version of problem (1) (see, for example,
[18,17,19,12]). We also refer to [20] for an asymptotic approach of the solution and [21] for a survey on the numerical
solution of systems of singularly perturbed differential equations.

In Section 4 we give the numerical results for a system of two equations, which corroborate the order of convergence
theoretically proved for the additive schemes. The additive and Euler methods are used to solve the same test problem
and the computational time required to obtain the numerical approximations with these schemes and the approximated
errors using the double-mesh principle are given. These results show that the additive schemes are more efficient than the
standard discretization.

The additive methods proposed in this paper and the results of convergence can be generalized to systems with an
arbitrary number of singularly perturbed parabolic reaction–diffusion equations if one disposes of a precise information of
the asymptotic behavior of the solution of the semidiscrete problem. In [9] the structure of the solution of systems of more
than two equations was established by means of an appropriate decomposition of the solution and a similar decomposition
could be used for the solution of the semidiscrete problem. In Section 4 we also consider a second test problem for a system
of three equations and the numerical results show that the type of additive schemes proposed in this paper are uniformly
convergent and significatively more efficient than the Euler method.

In this paper we denote by v ≤ w if vi ≤ wi, i = 1, 2, |v| = (|v1|, |v2|)
T and ∥f∥H = max{∥f1∥H , ∥f2∥H} where ∥f ∥H is

the maximum norm of f on the closed set H . Henceforth, C denotes a generic positive constant independent of the diffusion
parameters ε1 and ε2, and also of the discretization parameters N andM . We use v ≤ C meaning that v1 ≤ C, v2 ≤ C .

In this paper we will use repeated times the two following properties:
(P1) It holds ∥g ′

∥J ≤
2
µ
∥g∥J + µ∥g ′′

∥J , where J = [a, a + µ] is an arbitrary interval with µ > 0 and g ∈ C2(J) (see [22]).
(P2) If |Ψ (x)| ≤ CBµ(x) and |Ψ ′′(x)| ≤ Cµ−1Bµ(x), with

Bµ(x) = e−x/
√
µ

+ e−(1−x)/
√
µ,

then, |Ψ ′(x)| ≤ Cµ−1/2Bµ(x) (see [17,23]).
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