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a b s t r a c t

The extension of the nonnegative splitting for rectangular matrices called proper nonneg-
ative splitting is proposed first. Different convergence and comparison theorems for the
proper nonnegative splittings are established. The notion of double nonnegative splitting
is then generalized to rectangular matrices. Finally, different convergence and comparison
results are presented for this decomposition. The case for singular square matrices is also
studied.
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1. Introduction

The theory of splittings for square nonsingular matrices and its relationship with the solution of system of linear equa-
tions is quite well-known. Standard iterative methods like the Jacobi, Gauss–Seidel and successive over-relaxationmethods
for solving a square nonsingular system of linear equations Ax = b, arise from different choices of real square matrices U
and V , where A = U − V and b is a real n-vector. The book by Varga [1] contains several splittings such as regular and weak
regular splittings. A decomposition A = U − V of a real square nonsingular matrix A is

(i) regular splitting if U−1 exists, U−1
≥ O and V ≥ O [1],

(ii) weak regular splitting if U−1 exists, U−1
≥ O and U−1V ≥ O [2,1],

(iii) nonnegative if U−1 exists and U−1V ≥ O [3],

where the comparison is entrywise and O is the null matrix. The theory of nonnegative splittings is analyzed in [4,3,5–7].
Also, Csordas and Varga [8], Elsner [9], Song [3,5], Song and Song [6], Woźnicki [10] and many others have proved various
comparison results for different matrix splittings.

Berman and Plemmons [11] then extended the concept of splittings to rectangular matrices and called it as a proper
splitting. A decomposition A = U − V of A ∈ Rm×n is called a proper splitting [11] if R(A) = R(U) and N(A) = N(U), where
R(A) and N(A) denote the range space and the null space of A. Linear systems of the form

Ax = b, (1.1)

where A is a real square singular or real sparse or real rectangular matrix appear in many areas of mathematics. For ex-
ample rectangular/singular systems arise by applying finite difference methods to partial differential equations such as the
Neumann Problem and Poisson’s equation. The iteration

x(i+1)
= UĎVx(i)

+ UĎb, (1.2)
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is often employed to solve these systems, where BĎ means the Moore–Penrose inverse of B (see next section for the defini-
tion). The scheme (1.2) is said to be convergent if the spectral radius ofUĎV is less than 1, andUĎV is called the iterationmatrix.

The authors of [11] showed that if A = U−V is a proper splitting, then the scheme (1.2) converges to AĎb, the least square
solution ofminimumnorm for any initial vector x0 if andonly if the spectral radius ofUĎV is less than1. (See Corollary 1, [11].)
However, it is not true for any initial vector x0. As if x0 = 0 or x0 ∈ N(V ), then the iterative sequence will not move further.
Hence the initial vector x0 should not be a zero-vector and should not lie in the null space of V . (Interested readers can have a
look at the introductory part of the article [11] for the reason and importance of choosing proper splittings.) We also remark
that the scheme Y (j+1)

= UĎVY (j)
+ UĎ also converges to AĎ under analogous conditions for a suitable initial matrix Y 0.

Very recently, the authors of [12] extended the notion of regular and weak regular splittings to rectangular matrices and
the respective definitions are recalled next. A decomposition A = U − V of A ∈ Rm×n is called a proper regular splitting if
it is a proper splitting such that UĎ

≥ O and V ≥ O. Similarly, A = U − V is called proper weak regular splitting if it is a
proper splitting such that UĎ

≥ 0 and UĎV ≥ O. Note that Berman and Plemmons [11] proved a convergence theorem for
these splittings without specifying the types of matrix decompositions. Using the notion of proper regular splitting, The-
orem 3, [11] can be now rewritten as follows. Let A = U − V be a proper regular splitting of A ∈ Rm×n. Then AĎ ≥ O if
and only if ρ(UĎV ) < 1. In [12], one can find comparison results for these splittings and their applications to the double
splitting theory. But, in this paper, our plan is to introduce another new decomposition which is an extension of so-called
nonnegative splitting for square nonsingular matrices, and is more general than the proper regular and proper weak regular
splittings (see Section 3 for more discussion).

Eq. (1.1) can also be solved using double decomposition of A. (A decomposition of a real m × n matrix of the form
A = P−R−S is called double decomposition; for the real square nonsingular case it is called double splitting if P is nonsingular.)
The idea of double splitting was first introduced by Woźnicki [13] for square nonsingular matrices. This notion was then
extended by Jena et al. [12] for realm × nmatrices.

Shen et al. [14], Miao and Zheng [15] and Song and Song [6] have studied convergence and comparison theorems of
real square nonsingular matrices using double splittings. In particular, Song and Song [6] proved that the double splitting
is convergent if and only if the single splitting is convergent for the nonnegative splittings. In this paper, we are going to
extend the same result for real rectangular matrices along with a comparison result.

The central idea of this paper is to study the theory of nonnegative splittings for rectangular matrices. The organization is
as follows. In Section 2, we list all relevant definitions, notation and some earlier results whichwe use in the paper. Themain
results are given in Sections 3 and 4. Section 3 introduces the generalization of nonnegative splitting to rectangularmatrices,
and then discusses convergence and comparison theorems for these decompositions. In Section 4, we propose the notion
of double proper nonnegative splittings for real m × n matrices. Then convergence results for double proper nonnegative
splittings are established. At last, we obtain a comparison theorem for two different linear systems. Section 5 discusses the
group inverse analogue of a fewmain results mentioned in Sections 3 and 4 for square singular matrices. Finally, we end up
with conclusions.

2. Preliminaries

LetRn denote the n dimensional real Euclidean space andRn
+
denote the nonnegative orthant inRn. For a realm×nmatrix

A, i.e., A ∈ Rm×n, the matrix G satisfying the four equations known as Penrose equations: AGA = A, GAG = G, (AG)T = AG
and (GA)T = GA is called theMoore–Penrose inverse of A (BT denotes the transpose of B). It always exists and is unique, and is
denoted byAĎ.A ∈ Rm×n is said to be semi-monotone ifAĎ ≥ O. The group inverse of amatrixA ∈ Rn×n (if it exists), denoted by
A# is the uniquematrix X satisfying A = AXA, X = XAX and AX = XA. Equivalently, A# is the uniquematrix X which satisfies
XAx = x for all x ∈ R(A) and Xy = 0 for all y ∈ N(A). The index of a real squarematrix A is the least nonnegative integer k such
that rank(Ak+1) = rank(Ak). It is well known that A# exists if and only if index of A is 1 (i.e., R(A)⊕N(A) = Rn). Let A ∈ Rn×n

be of index k. Then, the Drazin inverse of A is the unique matrix AD
∈ Rn×n which satisfies the equations Ak+1AD

= Ak,
ADAAD

= AD and AAD
= ADA. A ∈ Rn×n is said to be group monotone if A# exists and A#

≥ O. Similarly, it is called Drazin
monotone if AD

≥ O. When A is a square nonsingular, then AĎ = A−1
= A#

= AD, and a semi-monotone matrix (as well as
a group monotone matrix or a Drazin monotone matrix) becomes amonotone matrix (i.e., A−1 exists and A−1

≥ O). (See the
book by Berman and Plemmons, [2] for more details on monotone matrices and their generalizations.) For A, B, C ∈ Rm×n,
we say A is nonnegative if A ≥ O, and B ≥ C if B − C ≥ O. We denote a nonnegative vector x as x ≥ 0. Let K , L be comple-
mentary subspaces of Rp, i.e., K ⊕ L = Rp. Then PK ,L denotes the (not necessarily orthogonal) projection of Rp onto K along
L. Thus P2

K ,L = PK ,L, R(PK ,L) = K and N(PK ,L) = L. If in addition, K ⊥ L, PK ,L will be denoted by PK .
A few properties of AĎ and A# [16] are listed here: R(AT ) = R(AĎ); N(AT ) = N(AĎ); AAĎ = PR(A); AĎA = PR(AT ); R(A) =

R(A#); N(A) = N(A#); AA#
= PR(A),N(A). In particular, if x ∈ R(A∗) then x = AĎAx and if x ∈ R(A) then x = A#Ax. The spectral

radius of A ∈ Rn×n, denoted by ρ(A) is defined by ρ(A) = max1≤i≤n |λi|, where λ1, λ2, . . . , λn are the eigenvalues of A.
The following results will be helpful to prove our main result. The first one is a part of Theorem 1, [11] and Theorem 3.1,

[17] which expresses A and AĎ in terms of U and V using the proper splitting A = U − V .

Theorem 2.1. Let A = U − V be a proper splitting. Then

(a) AAĎ = UUĎ; AĎA = UĎU.



Download English Version:

https://daneshyari.com/en/article/470456

Download Persian Version:

https://daneshyari.com/article/470456

Daneshyari.com

https://daneshyari.com/en/article/470456
https://daneshyari.com/article/470456
https://daneshyari.com

