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a b s t r a c t

We investigate DG–DG domain decomposition coupling using mortar finite elements to
approximate the solution to general second-order partial differential equations.Weweakly
impose an inflow boundary condition on the inflow part of the interface and the Dirichlet
boundary condition on the elliptic part of the interface via Lagrange multipliers. We obtain
the matching condition by imposing the continuity of the total flux through the interface
and the continuity of the solution on the elliptic parts of the interface. The diffusion
coefficient is allowed to be degenerate and the mortar interface couples efficiently the
multiphysics problems. The (discrete) problem is solvable in each subdomain in terms of
Lagrange multipliers and the resulting algorithm is easily parallelizable. The subdomain
grids need notmatch and themortar gridmay bemuch coarser, giving a two-scalemethod.
Convergence results in terms of the fine subdomain scale h and the coarse mortar scale H
are then established. A non-overlapping parallelizable domain decomposition algorithm
(Arbogast et al., 2007) reduces the coupled system to an interface mortar problem. The
properties of the interface operator are discussed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous Galerkin (DG) methods employ discontinuous piecewise polynomials to approximate the solutions of
differential equations with boundary conditions and interelement continuity weakly imposed through bilinear forms.
Examples of these schemes include the Bassi–Rebay method [1], the local discontinuous Galerkin (LDG) [2,3] methods, the
Oden–Babuška–Baumann (OBB–DG) [4] method, and interior penalty Galerkin methods [5–7].

Even though DG solvers can be expensive due to the number of unknowns, DG methods are of particular interest
for multiscale problems with several appealing properties: They are element-wise mass conservative; they support local
approximations of high order; they are robust and nonoscillatory in the presence of high gradients; they are implementable
on unstructured and even non-matching grids; and with appropriate meshing, they are capable of delivering exponential
rates of convergence.

On the other hand, non-overlapping domain decomposition is a useful approach for spatial coupling/decoupling. A
subsurface flow example is the multiblock mortar mixed finite element (MFE) method described in [8–11]. There, the
governing equations hold locally on the subdomains and physically driven matching conditions are imposed on block
interfaces in a numerically stable and accurate way using mortar finite element spaces. References on the mortar approach
for other discretizations include [12–15] for conforming Galerkin and [16] for finite volume elements. Couplings of DG and
MFE methods have been also studied in the literature. In [17], a DG–MFE coupling is introduced, which uses two Lagrange
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multipliers to impose continuity of fluxes andpressures. Amethod for coupling LDGandMFE is developed in [18] by choosing
appropriate numerical fluxes on interface edges.

In [19], a multiscale MFE method was introduced for modeling Darcy flow. There, the continuity of the flux is imposed
via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are
discretized on a fine grid scale. Optimal fine scale convergence is obtained by an appropriate choice of mortar grid and
polynomial degree of approximation. In [20], multiscale mortar MFE–DG/DG–DG coupling methods were developed for
pure diffusion problems. In [21], a multiscale mortar MFE method was also developed for nonlinear parabolic problems.

In this paper, we extend the results of [20] to a general advection–diffusion–reaction problem.We note that a DGmethod
to advection–diffusion–reaction problemswas also developed in [22]. In this paper,wedevelopmultiscalemortar [8]DG–DG
coupling methods based on four different DG formulations, the OBB–DG [4], the non-symmetric interior penalty Galerkin
(NIPG) [23], the symmetric interior penalty Galerkin (SIPG) [24,7,25,26], and the incomplete interior penalty Galerkin
(IIPG) [25,5,26]. In the method, the subdomain grids need not match and the mortar grid may be much coarser, giving a
two-scale method.Weweakly impose the boundary condition on the inflow part of the interface and the Dirichlet boundary
condition on the elliptic part of the interface via Lagrange multipliers, for subdomain problems. We provide the matching
condition on the interface by weakly imposing the continuity of the total flux on the interface and the continuity of the
solution on the elliptic part of the interface via mortar finite elements. The (discrete) problem is now solvable in each
subdomain in terms of Lagrange multipliers and the resulting algorithm is easily parallelizable. The diffusion coefficient
is allowed to be degenerate. By using a higher order mortar approximation, we are able to compensate for the coarseness of
the grid scale and maintain good (fine scale) overall accuracy. When the interface is not resolved well while the subdomain
scales are fine enough, our approach also makes it easy to improve global accuracy by simply refining the local mortar grid
where needed [19].

The paper is organized as follows. In the next section we introduce the model problem and formulate the weak
formulation for the mortar DG and establish some notations. We also establish equivalence between the DG weak
formulation and the partial differential equation. In Section 3 we introduce and analyze DG–DG mortar couplings. In
particular, we establish existence and uniqueness for the discrete solution and convergence estimates. The error estimates
are derived in termsof h andH , the discretization parameters for the subdomain andmortar spaces, respectively. In Section 4,
we develop a parallel non-overlapping domain decomposition algorithm for the solution of the algebraic system. The solver
is based on a reduction to an interface mortar problem similar to that introduced in [27,8,20] for diffusion equations. We
establish coercivity of the interface operator. Finally, in Section 5, we give some concluding remarks.

2. Problem statement and notation

2.1. Model equations

Let Ω = Ω1 ∪Ω2 ∪Γ12 ⊂ Rd, d = 1, 2, or 3 be a domain with polyhedral boundary ∂Ω and Γ12 = ∂Ωi ∩ ∂Ωj. Although
for simplicity we only present the method for two subdomains, our results easily extend to geometrically nonconforming
domain decompositions with finite numbers of subdomains.

We consider the following advection–diffusion–reaction problem:

− ∇ · (K(x)∇u) + b(x) · ∇u + c(x)u = f (x), x ∈ Ω, (2.1)

where f ∈ L2(Ω) and c ∈ L∞(Ω) are real valued, b = {bi}di=1 is a vector function whose entries bi are Lipschitz continuous
real valued functions on Ω as needed in (2.4) and (3.29) given below, and K = (Kij)

d
i,j=1 is a symmetric matrix whose entries

Kij are bounded, piecewise continuous real-valued functions defined on Ω , with

ζTK(x)ζ ≥ 0 ∀ζ ∈ Rd, a.e. x ∈ Ω. (2.2)

By the square root lemma, the matrix function K then admits a unique (symmetric) square root
√
K and it satisfies

Kw · v =
√
Kw ·

√
K v ∀w, v ∈ Rd. (2.3)

We also adopt the following hypothesis: There exists a positive function co such that

(co(x))2 = c(x) −
1
2
∇ · b(x) a.e. x ∈ Ω. (2.4)

By n(x) = nΩ(x) we denote the unit outward normal vector to ∂Ω at x ∈ ∂Ω . We define

∂Ω− = {x ∈ ∂Ω : b(x) · n(x) < 0} and ∂Ω+ = {x ∈ ∂Ω : b(x) · n(x) ≥ 0}.

We supplement (2.1) with the boundary conditions

(bu − K∇u) · n = gIb · n on ∂Ω−, −K∇u · n = 0 on ∂Ω+. (2.5)
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