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a b s t r a c t

Eliminating synchronizations is one of the important techniques related to minimizing
communications for modern high performance computing. This paper discusses principles
of reducing communications due to global synchronizations in sparse iterative solvers on
distributed supercomputers. We demonstrate how to minimize global synchronizations
by rescheduling a typical Krylov subspace method. The benefit of minimizing synchro-
nizations is shown in theoretical analysis and verified by numerical experiments. The ex-
periments also show the local communications for some structured sparse matrix–vector
multiplications and global communications in the underlying supercomputers increase in
the order P1/2.5 and P4/5 respectively, where P is the number of processors.

Crown Copyright© 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Minimizing communications in all kinds of algorithms for multi-core computing platforms is drawing increasing atten-
tion. On shared memory computers, reducing computations, exploring structured parallelism and increasing cache hit rate
(or data reuse rate) are always given to priorities, while on distributed supercomputers, priority is often given tominimizing
all kinds of communications [1]. In this paper, communication is referred to as the process of exchanging data between dif-
ferent computing nodes or processors via Message Passing Interface (MPI). Other efficient data movements in local shared
memory parts without using MPI, which often require efficient data structure to increase the cache hit rate, go beyond our
discussion. Communication time consists of two parts: the first part is setup time, which is used to prepare available com-
puting resources (computing nodes or processors) or to wait for necessary information, it depends mainly on the latency of
the underlying computer system and the number of synchronizations; whereas the second part depends on the ratio of the
data volume to the bandwidth of the communication systems, or the so called volume-to-surface ratio. To reduce commu-
nications, one should consider either or both of these factors. This paper focuses on improving the performance of Krylov
subspace methods on distributed supercomputers mainly by reducing the setup time via eliminating synchronizations.

The fundamental reasons for us to concentrate on reducing the setup time lies in that synchronizations are often un-
avoidable when computing reliable inner products on a distributed supercomputer, and the latency of an underlying
distributed supercomputer is the hardest to be improved. Recent technology has shown that latency almost cannot be
improved, with a tinny improvement, 5.5%/year, whereas bandwidth increases 26%/year and the speed of floating-point
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Table 1
Communication complexity of kernels of Krylov methods for structured sparse matrices.

Name Operations Computation time Communication time

Matrix–vector multiplication y← Ax nzNtfl/P µ(ts, tw, P)
One inner product dot ← xT y 2Ntfl/P 2(ts + tw)ω(P)
k inner products – 2kNtfl/P 2(ts + ktw)ω(P)
Vector update y← ax+y 2Ntfl/P –

N: the number of unknowns; P: the number of processors; nz : the average number of non-zeros
per row of A; tfl: the time per float point operation, ts: the setup time, tw: the time of passing per
volume (unit) of the message. Usually, ts ≫ tw .

operations increases 59%/year [2, p. 109] [3]. Secondly, there were relevant considerations of minimizing communications
by analyzing the volume-to-surface ratio for kernels in Krylov iterative methods [4–10].

The remainder of this paper is organized as follows. In Section 2, we briefly discuss the communication cost of the
computational kernels of Krylov subspace methods for some structured sparse matrices. Section 3 discusses principles to
reduce communications. And then, a detailed case study is presented in Section 4, demonstrating how to reconstruct Krylov
subspace methods. Section 5 compares the performance of the reconstructed methods with that of the corresponding serial
versions. Finally we present some numerical results to verify our analysis and give some conclusions.

2. Communication cost

In this paper, P is the number of processors, N is the number of unknowns in an underlying linear system, tfl is the time
for one floating point operation and ts is the average latency of an underlying system, and tw is the volume-to-surface ratio,
one unit volume message over the bandwidth of the underlying system. We approximate the total time for one iteration in
a Krylov subspace methods as follows

T = φ(N/P)tfl  
computation time

+ ψ(ts, tw)ω(P)  
global communication

+ µ(ts, tw, P)  
local communication

(1)

where φ(N/P)tfl is the computation time for the three basic computational kernels in classical Krylov subspace methods,
namely, vector updates, matrix–vector multiplications and inner product computations. Table 1 shows their computation
and communication complexity. Vector updates are parallel in nature and there is no need for communication. For general
sparse matrices, efficient matrix–vector multiplications need sophisticated techniques [11], whereas for some structured
sparsematrices, sparsematrix–vectormultiplications usually only need local communication—only exchanging data with its
neighbours, in particular the data structure of the underlying sparse matrices is well-organized. We denote the time for this
part as µ(ts, tw, P). Inner product computation needs global communications, we denote the cost as ω(P). There are several
theoretical models to describe the possible ω(P), see [12–14] for example. The terms µ(ts, tw, P) and ω(P) are left vague at
themoment, andwill be fitted and verified by real numerical results. The basic assumption isω(P)≫ µ(ts, tw, P) for large P .

Table 1 gives the computation and communications time of the three kernels needed on a distributed computer for
structured sparse matrices.

3. Strategies for reducing communications

It should be mentioned that the fact that communication holds back the scalability of iterative Krylov subspace methods
has been noticed since the 1980s. Pioneering researchers have proposed some original ideas to reduce communications
[15–21]. However, due to the constraint on the memory size at that time, most of these pioneering works focused mainly
on maximizing floating-point operations per unit memory. With the increase in development of hardware, more and more
memory and processors have become available, and the gaps between the floating point operations, bandwidth and latency
have increased dramatically. The importance of reducing communications is becoming more and more public. To measure
the communication efficiency and further impact performance improvement, especially for sparse iterative methods, a new
metric for ranking high performance computing systems has been introduced recently [22].

As discussed, both matrix–vector multiplications and inner product computation need communications. Avoiding
communications requires us to reschedule these two computational kernels: minimizing communications inmatrix–vector
multiplications [4,5,9,6]; andminimizing global communications due to the inner product computations [23–26,21,27–33].
We focus on the latter one for reasons mentioned before.

Three strategies have been considered tominimize communications. Firstly, communications should be overlappedwith
computations as much as possible, this step is easy to be put into practice. Secondly, perhaps the most attractive one, is to
remove inner production computations which need global communications, developing inner product free iterative solvers.
For some symmetric linear systems, there are already some results. For example, the inner products in the conjugate gradient
(CG) method can be replaced by solving a small linear system as described in the s-step methods [34–36,15,37,38] and
multiple search direction conjugate gradient method [39,40]. The second remedy is to schedule more inner products to
be computed at one synchronization point. In this way, the number of inner products usually increases but more inner
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