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a b s t r a c t

In this paper, we consider the nonlinear second-order cone programming problem. By
combining an SQPmethod and filter technique,we present a trust region SQP-filtermethod
for solving this problem. The proposed algorithm avoids using the classical merit function
with penalty term. Furthermore, under standard assumptions, we prove that the iterative
sequence generated by the presented algorithm converges globally. Preliminary numerical
results indicate that the algorithm is promising.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear second-order cone programming (NSOCP for short) problem is stated as follows:

min f (x),
s.t. h(x) ∈ K .

(1)

where f : Rn
→ R, h : Rn

→ Rl are twice continuously differentiable functions, K is the Cartesian product of second-order
cones, that is K = K l1 ×K l2 ×· · ·×K ls with l1 + l2 +· · ·+ ls = n, and the li-dimensional second-order cone K li is defined by

K li := {(x1, xT2)
T

∈ R × Rli−1
|x1 ≥ ∥x2∥},

with ∥ · ∥ denoting the Euclidean norm and K 1 denoting the set of nonnegative reals R+ (the nonnegative orthant in R).
The second-order cone programming problem has a wide range of applications in many fields, such as engineering,

control and so on [1–7]. As a special case, the linear second-order cone programming should be mentioned, which is to
find a vector x ∈ Rn such that

min


n

i=1

cTi xi :

n
i=1

AT
i xi = b, xi ∈ Ki, i = 1, 2, . . . , n


. (2)

Some algorithms have been developed to treat this class of problems [8,9,2,10,11], but there is little work for solving
nonlinear second-order cone programming. It is well known that the sequential quadratic programming (SQP) method is a
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classical and efficient approach for solving nonlinear programming and has been extensively discussed in [12–18], as well as
numerous subsequent references. Lately, Kato and Fukushima proposed an SQP-type algorithm for nonlinear second-order
cone programming [19]. Their method is to generate iteratively a sequence {xk} which converges to a Karush–Kuhn–Tucker
point of the problem (1) by solving the following quadratic subproblem QP(xk, d):

min sk(d) = ∇f (xk)Td +
1
2
dTMkd

s.t. h(xk) + ∇h(xk)Td ∈ K ,
(3)

where xk is a current iterate and Mk is a symmetric positive definite matrix approximating the Hessian of the Lagrangian
function of problem (1) in some sense. It is obvious that the subproblem (3) is a convex programming problem.

However, whether the exact linear search or the inexact linear search is used in the general SQP method, there are many
difficulties obtaining the penalty parameter in the penalty function, as we see that the algorithm for nonlinear second-order
cone programming presented by Kato et al. [19] also needs to choose the penalty parameter. In order to dispense with
the idea of a penalty function in linear search and overcome the infeasibility of the general QP subproblem, we consider a
modified SQP-filter method to solve the nonlinear second-order cone programming problem.

Ever since filter methods were introduced for constrained optimization by Fletcher and Leyffer [20,21], they have
attached a lot of attention [22–26] partially due to their superior numerical results, more importantly, they avoid some
pitfalls of penalty functionmethods. The filter methods give up the strict monotone behavior of usual measures, like penalty
functions. Instead of combining the objective and constraint violation into a single function, they view (1) as a biobjective
optimization problem that minimizes f (x) and constraint violation, and then the filter allows to increase the flexibility in
optimization processes to accept new iterates and generally allows larger steps towards the solution. More recently, they
have been extended to deal with many different optimization problems, such as a pattern search algorithm for derivative-
free optimization [22], a bundle method for non-smooth optimization [27], and a trust region filter method for general
nonlinear programming [24], and so on.

In this paper, we present a trust region SQP-filter method for nonlinear second-order cone programming by considering
themerits of themodified SQPmethod and filter technique. It is shown that our algorithmhas the following goodproperties:

(1) It does not need to consider the penalty parameter, avoiding therefore the update of penalty parameters associatedwith
the penalization of the constraints in merit functions;

(2) The algorithm either terminates at a Karush–Kuhn–Tucker (KKT) point within finite steps or generates an infinite
sequential whose every accumulation point is a KKT point under proper conditions.

The rest of the paper is organized as follows. In the next section, we first review some preliminaries associated with
second-order cones, then give some notations and lemmas to develop the modified SQP method, and finally study the filter
technique. In Section 3, we present a trust region SQP-filter algorithm for nonlinear second-order cone programming. The
global convergence of the algorithm is discussed in Section 4. Preliminary numerical results are reported in Section 5. Some
conclusions are given in Section 6.

Throughout this paper, all vectors are column vectors, and T denotes transpose. I represents an identitymatrix of suitable
dimension, and ∥ · ∥ denotes the Euclidean norm defined by ∥x∥ :=

√
xT x for a vector x. For any differentiable function

f : Rn
→ Rn, ∇f (x) denotes the gradient of f at x. Let int K denote the interior of K . x ≽ y or x ≻ y means that x − y ∈ K

or x − y ∈ int K , respectively. R++ means the positive orthant of R. For simplicity, we use x = (x1, x2) ∈ R × Rn−1 for the
column vector x = (x1, xT2)

T .

2. Preliminaries

In this section, we first review some basic facts on Euclidean Jordan algebra with the second-order cone. Then we give
some notations and lemmas for QP problems. Finally, we shall recall the filter technology.

Euclidean Jordan algebra has been introduced in [8,28], which provides a useful methodology of dealing with SOC.
A Euclidean Jordan algebra is a triple (V , ⟨·, ·⟩, ◦) (V for short), where (V , ⟨·, ·⟩) is a finite dimensional inner product

space over R and (x, y) → x ◦ y : V × V → V is a bilinear mapping which satisfies the following conditions:

(a) x ◦ y = y ◦ x, for any x, y ∈ V .
(b) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V where x2 = x ◦ x.
(c) ⟨(x ◦ y, z)⟩ = ⟨(x, y ◦ z)⟩ for all x, y, z ∈ V .

Based on the general definition of Euclidean Jordan algebra, given the n-dimension Euclidean space Rn, the inner product
and the Jordan product are defined as follows respectively.

For any x = (x1, x̄2) ∈ R × Rn−1, y = (y1, ȳ2) ∈ R × Rn−1, define the Jordan product:

x ◦ y := (xTy, x1ȳ2 + y1x̄2).

the inner product is:

⟨x, y⟩ =

n
i=1

xiyi,
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