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a b s t r a c t

In the present paper, we propose the global full orthogonalization method (Gl-FOM) and
global generalized minimum residual (Gl-GMRES) method for solving large and sparse
general coupled matrix equations

p
j=1

AijXjBij = Ci, i = 1, . . . , p,

where Aij ∈ Rm×m, Bij ∈ Rn×n, Ci ∈ Rm×n, i, j = 1, 2, . . . , p, are given matrices and
Xi ∈ Rm×n, i = 1, 2, . . . , p, are the unknown matrices. To do so, first, a new inner product
and its corresponding matrix norm are defined. Then, using a linear operator equation and
newmatrix product, we demonstrate how to employ Gl-FOMandGl-GMRES algorithms for
solving general coupled matrix equations. Finally, some numerical experiments are given
to illustrate the validity and applicability of the results obtained in this work.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the general coupled matrix equations of the form

p
j=1

AijXjBij = Ci, i = 1, . . . , p, (1.1)

whereAij ∈ Rm×m, Bij ∈ Rn×n, and Ci ∈ Rm×n, i, j = 1, 2, . . . , p, are large and sparsematrices,Xi ∈ Rm×n, i = 1, 2, . . . , p, are
the unknown matrices. Such problems arise in linear control and filtering theory for continues or discrete-time large-scale
dynamical systems. They also play an important role in image restoration and other problems; for more details see [1–5]
and the references therein.

Many investigated matrix equations in the literature can be considered as special cases of (1.1). For example, Bouhamidi
and Jbilou [1] have considered the generalized Sylvester matrix equation

p
j=1

AjXBj = C, (1.2)
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and proposed a Krylov subspacemethod for solving (1.2). In [6], Li andWang proposed an iterative algorithm for theminimal
norm least squares solution to (1.2). Chang andWang [7] have presentednecessary and sufficient conditions for the existence
and the expressions for the symmetric solutions of the matrix equations

AX + YA = C,

AXAT
+ BYBT

= C,

and

(ATXA, BTXB) = (C,D).

In [8], Wang et al. have given necessary and sufficient conditions for the existence of constant solutions with
bi(skew)symmetric constrains to the matrix equations

AiX − YBi = Ci, i = 1, 2, . . . , s,

and

AiXBi − CiYDi = Ei, i = 1, 2, . . . , s.

A good survey of the methods to solve special cases of the general coupled matrix (1.1) can be found in [9].
It is easy to see that the general coupled matrix (1.1) is equivalent to

p
j=1

(BT
ij ⊗ Aij)vec(Xj) = vec(Ci), i = 1, . . . , p, (1.3)

where ⊗ denotes the Kronecker product operator and vec(Z) = (zT1 , zT2 , . . . , zTm)T for Z = (z1, z2, . . . , zn) ∈ Rm×n.
Obviously, the coefficient matrix of the linear system (1.3) is of order pmn and can be solved by iterative methods such
as the methods based on the Krylov subspace methods like the GMRES [10]. Evidently, the size of the linear system (1.3)
would be huge even for moderate values of m, n and p. Therefore, it is more preferable to employ an iterative method for
solving the original system (1.1) instead of the linear system (1.3). Note that system (1.1) has a unique solution if and only if
the coefficient matrix of the linear system (1.3) is nonsingular. Throughout this paper we assume that the system (1.1) has
a unique solution.

In [9], Dehghan and Hajarian have presented an iterative method to solve the general coupled matrix equations (1.1)
over generalized bisymmetric matrix group (X1, X2, . . . , Xp). In [11], a gradient based algorithm and a least square based
iterative algorithm have been presented for solving (1.2). Ding and Chen [12] used the hierarchical identification principle
to construct iterative solutions to the coupled linear matrix equation (1.1). In [13], Zhou et al. proposed an iterative method
for finding weighted least squares solutions to system (1.1). A gradient based iterative algorithm for solving coupled matrix
equations has been presented by Zhou et al. in [14]. Recently, Zhang in [4] has extended the CGNE [15] and Bi-CGSTAB [15]
algorithms to solve (1.1).

In [2], the global Krylov subspace methods have been originally presented for solving a linear system of equations with
multiple right-hand sides. It is well-known that the global Krylov subspacemethods outperform other iterativemethods for
solving such systems when the coefficient matrix is large and nonsymmetric. On the other hand, the global Krylov subspace
methods are also effective when applied for solving large and sparse linear matrix equations; for more details see [1,16,17]
and the references therein. Therefore, we are interested in employing the global Krylov subspaces for solving (1.1) when the
coefficient matrices are large and sparse. To do so, we first define the linear operator M as follows

M : Rm×n
× · · · × Rm×n

→ Rm×pn,

X = (X1, X2, . . . , Xp) → M(X) = (A1(X), A2(X), . . . , Ap(X)),

where

Ai(X) =

p
j=1

AijXjBij, i = 1, 2, . . . , p.

Using the linear operator M, we rewrite Eq. (1.1) as

M(X) = C, (1.4)

where C = (C1, C2, . . . , Cp). In the next sections, we utilize the linear matrix operator M to present Gl-FOM and Gl-GMRES
algorithms for solving (1.1). More precisely, we focus on the solution of Eq. (1.4) instead of Eq. (1.1).

The rest of the paper is organized as follows. In Section 2, we first recall some necessary definitions and notations, then
a new inner product is presented. We also introduce a new matrix product and give some of its properties. Section 3 is
devoted to employing the Gl-FOM and Gl-GMRES algorithms for solving Eq. (1.4). In Section 4, some numerical experiments
are given to show the efficiency of the proposed algorithms. Finally, the paper finishes with a brief conclusion in Section 5.
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