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a b s t r a c t

This paper is concerned with an existing compact finite difference ADI method,
published in the paper by Liao et al. (2002) [3], for solving systems of two-dimensional
reaction–diffusion equations with nonlinear reaction terms. This method has an accuracy
of fourth-order in space and second-order in time. The existence and uniqueness of
its solution are investigated by the method of upper and lower solutions, without any
monotone requirement on the nonlinear reaction terms. The convergence of the finite
difference solution to the continuous solution is proved. An efficient monotone iterative
algorithm is presented for solving the resulting discrete system, and some techniques for
the construction of upper and lower solutions are discussed. An application using a model
problem gives numerical results that demonstrate the high efficiency and advantages of
the method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in various fields of applied sciences are described by systems of reaction–diffusion equations. A great
deal of work has been devoted to the qualitative analysis of these systems (see [1] and the references therein) and the
numerical methods for the computation of their solutions (cf. [2–9]). In this paper, we present a numerical treatment of a
system of two-dimensional reaction–diffusion equations with nonlinear reaction terms by a compact finite difference ADI
method. This includes the qualitative analysis of the resulting discrete system and a basic monotone iterative algorithm for
the computation of numerical solutions. The reaction–diffusion system under consideration is given by

u(l)
t − D(l)

1 u(l)
xx − D(l)

2 u(l)
yy = f (l)(x, y, t,u), (x, y) ∈ (0, 1) × (0, 1), t > 0,

u(l)(0, y, t) = g(l)
1 (y, t), u(l)(1, y, t) = g(l)

2 (y, t), y ∈ [0, 1], t > 0,
u(l)(x, 0, t) = h(l)

1 (x, t), u(l)(x, 1, t) = h(l)
2 (x, t), x ∈ [0, 1], t > 0,

u(l)(x, y, 0) = φ(l)(x, y), (x, y) ∈ [0, 1] × [0, 1], l = 1, 2, . . . ,N,

(1.1)

where u = (u(1), . . . , u(N)) and for each l = 1, 2, . . . ,N,D(l)
1 and D(l)

2 are positive constants. It is assumed that for each
l = 1, 2, . . . ,N , the functions f (l), g(l)

k , h(l)
k (k = 1, 2) and φ(l) are continuous in their respective domains, and f (l)(·,u) is, in

general, nonlinear with respect to the components of u.
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Finite difference methods have long been used to approximate the solution of ordinary or partial differential equations.
There are many ways to formulate a finite difference approximation for the system (1.1). In the usual finite difference
method, one approximates the term u(l)

t by Euler backward method and the second-order derivatives u(l)
xx and u(l)

yy by the
second-order central difference quotient (see [4–6,10–13]). However, the resulting difference scheme from this method has
only the accuracy of second-order in space and first-order in time (e.g., see [5,6,10,11,13]). In other words, we must use
very fine meshes in order to obtain the desirable accuracy. Thus, much computational work is involved. As is well known,
by using the Crank–Nicolson technique in the time discretization, the accuracy in time can be improved to second-order
without any additional treatment of the initial values (see [13]). For the improvement of the spatial accuracy, it is desirable
to develop a class ofmethods that are both higher-order (higher than second-order) and compact. The higher-order accuracy
of these methods allows coarser meshes to be used, thus lowering computational costs. The compact property means that
these methods utilize only mesh points directly adjacent to the node about which the differences are taken. This makes the
treatment of the boundary conditions easier (see [14,15]).

The study on the higher-order compact methods is extensive, and different forms of the methods have been developed.
Hirsh [16] developed a higher-order compact difference technique for some fluid mechanics problems by treating the first
and second derivatives as unknowns, and it was numerically exhibited through a variety of test examples. Forester [17]
proposed a higher-order difference scheme that allowed the underlyingmethod to remain compact. In the context of fourth-
order compact difference discretizations, a class of methods were first proposed by MacKinnon and Carey [14] for material
interface discontinuities. The main idea of these methods is to increase the accuracy of the standard central difference
approximation from the second-order to the fourth-order by approximating compactly the leading truncation error terms.
The extension of these methods to boundary value problems in computational mechanics was discussed in [15]. The
similar methods were proposed in [18–20] for convection diffusion equations, in [21] for the Euler equation, in [22] for the
stream-function vorticity equation, and in [23,24] for the Poisson equation. These methods are also similar to the so-called
Operator Compact Implicit methods developed by several investigators (see [25]) although they were derived in a different
manner.

On the other hand, alternating direction implicit (ADI) methods are popular methods for solving two- or three-
dimensional parabolic differential equations (see [26–29]). The ADI method reduces two- or three-dimensional problems to
a succession of one-dimensional problems. Usually, one needs only to solve a sequence of tridiagonal systems. Hence, the
overall computation is simple and fast.

Recently, Liao et al. [3] presented a compact finite difference ADI method for (1.1) by using the Crank–Nicolson
technique in the time discretization and a fourth-order Padé approximation to u(l)

xx and u(l)
yy . Since an ADI technique is

adopted in this method it reduces the two-dimensional problem to two one-dimensional problems. This reduction gives
a practical advantage in the computation of numerical solutions. However, its higher-order convergence was exhibited
only numerically through two test examples in [3]. To the best of our knowledge, no theoretical analysis, such as the
existence–uniqueness problem and the convergence of numerical solutions, has so far been given to this method. On the
other hand, since the function f (l)(·,u) is usually nonlinear in u, the corresponding discrete problem becomes a system of
nonlinear algebraic equations. For such a system, it is necessary to develop some kind of iterative algorithm for computing
its solutions. In this paper, we give a further theoretical investigation to this method, and develop a monotone iterative
algorithm for the computation of the solutions of the corresponding discrete system. Our approach is by the method of
upper and lower solutions and its associatedmonotone iteration. Thismethodhas been extensively used to various nonlinear
problems (see [1,4–9,30–36]).

Firstly, we give some qualitative analyses for the compact finite difference ADI method in [3]. This includes the existence
anduniqueness of a finite difference solution and the convergence of the numerical solution to the corresponding continuous
solution with the accuracy of fourth-order in space and second-order in time. Secondly, by using upper and lower solutions
as the initial iterations, we present a basic monotone iterative algorithm for the computation of the numerical solution.
Unlike Newton’s method, this algorithm maintains the tridiagonal structure of the ADI method. On the other hand, the
monotone convergence of the corresponding sequences gives concurrently improving upper and lower bounds for the
solution. Thereby, from the computational point of view, the monotone convergence has superiority over the ordinary
convergence. The definition of upper and lower solutions and the corresponding monotone iterations here do not require
any monotonicity of the functions f (l)(·,u). This enlarges the application of the monotone iterative algorithm essentially.

The outline of the paper is as follows. In the next section, we discretize problem (1.1) into a system of nonlinear algebraic
equations by using the compact finite difference ADI method in [3]. In Section 3, we give some auxiliary results. These
results will play an important role in our discussions. The existence and uniqueness problem is treated in Section 4 by the
method of upper and lower solutions, and the convergence of the method is discussed in Section 5. It is shown that the
finite difference solution has the accuracy of fourth-order in space and second-order in time. Section 6 is devoted to a basic
monotone iterative algorithm for the computation of the numerical solutions. In Section 7, we discuss some techniques for
the construction of upper and lower solutions. An application of the method to an enzyme–substrate reaction–diffusion
problem is given in Section 8. We use some numerical results to demonstrate the monotone convergence of iterations, the
higher-order accuracy of the numerical solution and the corresponding computational cost (CPU time in seconds), and to
compare the proposed monotone iterative algorithm with the standard Newton’s method. The final section contains some
concluding remarks.
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