
Computers and Mathematics with Applications 72 (2016) 1–24

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

LinearOperator—A generic, high-level expression syntax
for linear algebra
Matthias Maier a, Mauro Bardelloni b, Luca Heltai b,∗
a School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, USA
b SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy

a r t i c l e i n f o

Article history:
Received 21 October 2015
Received in revised form 4 April 2016
Accepted 16 April 2016
Available online 17 May 2016

Keywords:
Expression templates
Linear algebra
High performance computing

a b s t r a c t

We introduce an expression syntax for the evaluation of matrix–matrix, matrix–vector
and vector–vector operations. The implementation is similar to the well-known general
concept of expression templates as used, for example, in the C++ linear-algebra libraries
Eigen and Blaze. The novelty of the approach that is discussed here lies in the use of
new C++11 features like lambda expressions and std::function objects that avoid the
majority of the implementational complexity that usually comes with a pure template
solution.

A concrete implementation of the expression syntax has been developed within
the framework of the finite-element library deal.II, but it is fairly generic: the
LinearOperator implementation only requires a minimal vector and matrix interface,
that all of deal.II’s concrete vector and matrix types adhere to. This makes the interface
fully transparent with respect to the concrete implementation, in particular to the storage
strategy (full matrix, sparse structure), and memory strategy (local, shared, distributed).

The paper concludes with a number of performance comparisons and examples
that demonstrate that the framework results in efficient, short and concise code. The
performance comparisons show that the overhead introduced bystd::function objects
is negligible for moderately sized matrices, even when compared to native expression-
template implementations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Expression templates [1,2] are well known optimization techniques to avoid the creation of large, temporary objects
in arithmetic expressions. This is especially important for matrix–matrix, matrix–vector and vector–vector operations that
frequently occur in computational linear algebra.Withmatrix and vector objects that easily go into the gigabytes ofmemory
requirements, temporaries have to be avoided asmuch as possible. Nevertheless, an intuitive syntax for working with linear
algebra objects is desirable.

The idea behind expression templates is to overload operator+, -, *, etc., to build up an arithmetic syntax tree with
the help of the C++ template mechanism instead of performing the arithmetic operation immediately by returning an
intermediate object. The arithmetic operations are performed later when the expression is complete and an evaluation of
the expression is actually requested. A number of numerical libraries make use of expression templates to a certain extent.
Examples are the C++ linear-algebra libraries Eigen [3], or Blaze [4].
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Although expression templates offer a good incarnation of the ‘‘generic programming’’ paradigm [5], they are difficult
techniques to master, that are not easily adapted to existing numerical libraries, or collections of libraries, and they have
non-negligible implementational complexity. We present an alternative approach of building up an expression syntax
for matrix–matrix, matrix–vector, and vector–vector operations. It uses the C++11 [6] features lambda expressions and
lambda captures, as well as std::function objects, instead of a templates-only approach. This avoids the majority of
the implementational complexity that usually comes with a pure template solution. Only two class signatures are required:
A class LinearOperator to encapsulate a linear operation with two template parameters denoting its domain and range,
and a class PackagedOperation to store a (partially applied) expression with a template parameter for its range space in
which the result can be stored. Our expression syntax is suitable to encapsulate awide variety of concretematrix, vector, and
linear solver classes because only a generic, high-level interface is required (see Section 2). In particular, we do notmake any
assumptions on the underlying memory model, or type of execution (sequential, or with thread/process parallelization). No
random access to data, or other low-level access is required. This naturally rules out some low-level optimization techniques
that require such access (or detailed information about the expression that is formed up), but on the other hand it allows
encapsulation of a wide variety of concrete matrix and vector implementations.

The expression syntax is developed within the framework of the finite-element library deal.II and has been added
to the library starting from version 8.3 [7,8]. However, we stress the point that the implementation that is presented in
this work is otherwise generic. The only deal.II specific portion is the concrete form of the vector and matrix interfaces
we assume to be present, and that LinearOperator and PackagedOperation mimic. These interfaces can be readily
adjustedwithminor changes to any concrete choice of naming and call signature.We provide also twominimal examples of
other interfaces and concrete types, by adapting the LinearOperator class to work with the Eigen and Blaze libraries.
All examples and benchmark codes are available (under the GNU Lesser General Public License version 2.1) on a public
GitHub repository [9].

The overhead of dynamic std::function objects and dynamic temporary storage pools used in LinearOperator
compared to optimal hand-written code, or (smart) expression templates, does not depend on thematrix size. The overhead
is generally negligible for matrix sizes beyond 1000 × 1000.

The paper is structured as follows. In Section 2 we define the vector, matrix, and solver interfaces. In Sections 3 and
4, we define the LinearOperator and PackagedOperation classes. We discuss implementation aspects for vector
space operations and present a generic strategy for encapsulating concrete matrix objects into the LinearOperator
framework. Section 5 presents a number of performance comparisons between LinearOperator and low-level
implementations based on the deal.II, Eigen, and Blaze libraries. Section 6 presents a detailed real-life example, where
LinearOperator and PackagedOperation are used to implement a preconditioner for the Stokes problem. A short
performance comparison to a hand-written preconditioner is presented. We draw some conclusions in Section 7.

2. Vector, matrix and solver interfaces

In this section we introduce the vector, matrix and solver interfaces we will use to describe and implement the
LinearOperator template class.We use the deal.II finite-element library for our concrete implementation. It provides
a large variety of matrix and vector types (serial and MPI distributed variants, as well as wrappers to external libraries) and
offers a standardized, high-level interface for all vector and matrix types.

A matrix object describes a linear operation. As such we require at least the following minimal interface for applying its
action on a source vector src and storing the result in a destination vector dst:

1 class Matrix
2 {
3 template<typename Vector>
4 void vmult(Vector &dst, const Vector &src);
5
6 template<typename Vector>
7 void vmult_add(Vector &dst, const Vector &src);
8 };

Here, the variant vmult_add adds the result of the matrix–vector multiplication to dst instead of replacing its former
contents with the result. Depending on the concrete matrix type (such as full matrices, sparse matrices, MPI-distributed
variants, or block matrices) many more member functions for accessing and manipulating a matrix are available, and the
concrete signature of the vmult function, etc., may vary. It is only important to be able to call vmult, etc., with a compatible
vector type. The power of this approach lies in the fact that using this interface is (almost) completely opaque with respect
to the concrete implementation, or operations being performed.

Similarly, the guaranteed minimal interface for vectors – besides the possibility to use them in a call to vmult – is:

1 class Vector
2 {
3 typedef double number_type;
4
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