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a b s t r a c t

In this work a lattice Boltzmann flux scheme for the convection–diffusion equation (CDE) is
proposed. In this scheme, the fluxes across the cell interface are calculated byusing the local
solution of the multiple-relaxation-time lattice Boltzmann equation for CDE. The present
method is suitable for simulating both isotopic and anisotropic diffusion processes. Mean-
while, through applying the midpoint time integration technique, the present method
relaxes the time step constraint in the original lattice Boltzmann flux scheme. Four con-
vection–diffusion problems are simulated to validate the present scheme. The obtained
results agree well with the analytical or previous published solutions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Transport phenomenon is widely encountered in many engineering fields. These transport processes usually can be
described using the convection–diffusion equation (CDE). Traditionally, people applied the finite-difference, finite-volume
and finite-element numericalmethods to solve the CDE.However, thesemethods are difficult to treat the transport problems
with complex interfaces efficiently.

In the past two decades, lattice Boltzmannmethod (LBM) has proven to be a powerful computational technique to study
complex physical systems, such as multicomponent/multiphase flows [1,2], turbulence [3,4], microflows [5,6], fluid–solid
interactions [7–10]. Compared with the conventional methods, the treatment of boundary conditions is very easy in LBM
when involving the complex geometries. Moreover, LBM code is easily implemented in parallel due to its particle-based
feature. LBM has also extended to solve the CDE. A representative example is the LB models for thermal flows [11–14]. In
addition to these thermal LB models, many other models which are designed for generalized convection–diffusion have
been developed. Van der Sman and Ernst proposed a LB scheme for CDE on irregular lattices [15]. They asserted that
the LB scheme has little numerical diffusion compared with conventional Lax–Wendroff scheme. Ginzburg extended two
different LB models (Equilibrium-type and link-type) to advection and anisotropic-dispersion equation [16]. Because the
mass conservation is taken into consideration, the accuracy and stability of the isotropic convection–diffusion LB models
are enhanced. Furthermore, Shi and Guo developed a LBGK model for nonlinear CDE. In this model, both real and complex-
valued distribution function are considered [17]. Note that many existing LB models for CDE have a common defect. The
additional deviation term exists in the recovered macroscopic equations. To eliminate the unwanted terms, Chopard et al.

∗ Corresponding author.
E-mail addresses: hy304@126.com (Y. Hu), dcli@bjtu.edu.cn (D. Li).

http://dx.doi.org/10.1016/j.camwa.2016.04.032
0898-1221/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2016.04.032
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2016.04.032&domain=pdf
mailto:hy304@126.com
mailto:dcli@bjtu.edu.cn
http://dx.doi.org/10.1016/j.camwa.2016.04.032


Y. Hu et al. / Computers and Mathematics with Applications 72 (2016) 48–63 49

introduced a source term in the LB evolution equation [18]. However, the time-derivative and space-derivative are included
in the source term. As a result, these correction terms cannot computed locally. Through designing the new equilibrium
distribution function and the discrete source term, Chai and Zhao constructed a LBGK model for CDE [19]. In this model,
both collision process and fluxes calculation can be implemented locally. It should be noted that the above LB models are
designed only for the isotropic diffusion processes. Yoshida and Nagaoka presented amultiple-relaxation-time LBmodel for
the convection and anisotropic diffusion equation [20]. Through introducing the off-diagonal components of the relaxation
matrix, the anisotropic diffusion-coefficient tensor can be obtained. The asymptotic analysis indicates that their MRT LB
model has first- and second-order accuracy in time and space, respectively. Huang and Wu gave a modified MRT-LBM for
convection–anisotropic equation [21]. Their model can recover the corresponding CDEwith anisotropic diffusion coefficient
with no deviation term.

Although LBM has many notable merits, it also suffers from some drawbacks. As pointed out by Wang et al. [22–24],
standard LBM can only applied on a regular mesh. The time step is tied up with the mesh spacing in LBM. Furthermore,the
discrete lattice effects of the source term and boundary condition must be considered. To avoid these drawbacks, Wang
et al. proposed a lattice Boltzmann flux scheme [22–24]. Like the gas kinetic scheme, the fluxes across the cell interface are
evaluated by the solution of the discrete lattice BGK equation. The distribution function can be reconstructed using the first
order Chapman–Enskog expansion. As a result, the memory overhead in this method is much less than the LBM. As a finite
volume method, this method can be applied on an irregular mesh conveniently. The treatment methods of the source term
and boundary conditions are same as those in the conventional finite volume method.

In this paper, a lattice Boltzmann flux scheme for CDE is proposed. In Ref. [23], Wang et al. considered a thermal lattice
Boltzmann scheme based on single-relaxation-time LB model for incompressible thermal flows. However, only isotropic
heat diffusion can be treated using their methods. Different from the previous works [22–24,27], the multiple-relaxation-
time discrete lattice Boltzmann equation is used to evaluate the fluxes across the cell interface. In this study, the multiple-
relaxation-time LB model for CDE which is proposed by Yoshida and Nagaoka is applied [20]. The local solution of this
multiple-relaxation-time model is used to compute both convective and diffusive fluxes. Both isotropic and anisotropic
diffusion processes can be captured. Furthermore, the midpoint time integration rule is used, which relaxes the time step
limit in the original method [22]. Four convection–diffusion problems are simulated to validate the present scheme. The
computational results are in good agreement with the analytical or numerical solutions reported in the previous literatures.

2. Numerical methodology

We consider the following convection–diffusion equation

∂φ

∂t
+ ∇ · (uφ) = ∇ · (D∇φ), (1)

where φ is a scalar function of time and space. u is the velocity and usually governed by incompressible Navier–Stokes
equation. D denotes the diffusion coefficient matrix. In this paper only the two-dimensional case is studied. It should be
noted that the present method can be extended to solve three-dimensional CDE directly. In fact, three types of diffusion
coefficient matrices are considered. The first type of diffusion-coefficient matrix has full anisotropy with non-zero off-
diagonal components

D =


D11 D12
D21 D22


. (2)

Note thatDmust be symmetric and positive definite to ensure the physical reality. IfD12 = D21 = 0, the diffusion coefficient
matrix D = diag(D11,D22) is diagonally anisotropic. The third type is the isotropic diffusion matrix, i.e. D11 = D22 and
D12 = D21 = 0.

Different from the work in Ref. [23], the multiple-relaxation-time (MRT) LBM is employed to construct the present
algorithm [20,21,25]. The evolution equation can be expressed as

g(x + eα1t, t + 1t) − g(x, t) = −3(g(x, t) − geq(x, t)) = −M−1Sg(m(x, t) − meq(x, t)), (3)

where the above nations denote

g(x, t) = (g0(x, t), g1(x, t), . . . , g8(x, t))T , (4)

m(x, t) = Mg = (m0(x, t),m1(x, t), . . . ,m8(x, t))T , (5)

meq(x, t) = (meq
0 (x, t),meq

1 (x, t), . . . ,meq
8 (x, t))T . (6)

Here gα(x, t) is the distribution function for the discrete velocity eα . 1t is the time step. 3 = M−1SgM is the relaxation
matrix in the velocity space. The scalar variable φ can be computed as:

φ =


α

gα =


α

geq
α . (7)
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