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a b s t r a c t

The purpose of this article is to propose ODE based approaches for the numerical evaluation
of matrix functions f (A), a question of major interest in the numerical linear algebra. For
that, we model f (A) as the solution at a finite time T of a time dependent equation. We
use parallel algorithms, such as the parareal method, on the time interval [0, T ] in order to
solve the obtained evolution equation. When f (A) is reached as a stable steady state, it can
be computed by combining parareal algorithms and optimal control techniques. Numerical
illustrations are given.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The efficient numerical computation of matrix functions, as well as the solution of matrix polynomial equations (such as
Riccati’s), is currently an important topic in numerical linear algebra this kind of problem arises in a number of situations
such as the approximation of nonlocal operators or of infinitesimal generators as well as in computational control, we refer
to [1,2] for the computation of pth-roots of matrices, to [3] for the solution of rational matrix equations and to the book of
Nick Higham [4] for a general presentation.

Let A be a matrix, to evaluate f (A) or f (A)b for a given vector b, a number of strategies have been developed: they often
use an application of approximation theory techniques to a complex representation of f , defining rational approximation
methods, let us cite the recent works of Frommer et al. [5] on rational Krylov methods and the references therein.

The use of efficient parallel computations of parabolic PDEs has been proposed in e.g. in [6]where the generator exp(tA) is
decomposed as a sum of independent polar terms, and more recently, by Gander and Güttel [7] with the Paraexp algorithm
combining Duhamel’s principle and additive identities. The evaluation of exp(A) is an old problem, one can find a nice
survey of methods in [8]. However, in a number of situations, the function f is not known so the tools of approximation
theory cannot be applied.

In a more general way, differential equations can be used to identify, then to compute, the matrix function f (A), as a
state of the solution; it can be a solution at finite time as well as a stable steady state, when good stability properties are
present.
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To compute f (A) as the solution of an ODE at finite time T , T = 1 for simplicity, a homotopy method can be displayed as
follows: let us consider the matrix differential equation

dX
dt

= F (X(t)), t ∈ (0, 1),

X(0) = X0.

(1)

We look for F such that X(1) = f (A). We introduce the homotopy path A(t) = X0 + t(A − X0), we set X(t) = f (A(t)); X0
is chosen in such a way f (X0) is easy to compute. We have:

dX
dt

=
dA
dt

f ′(f −1(X(t))), t ∈ (0, 1),

X(0) = f (X0).

(2)

A numerical approximation of f (A) = X(1) can be obtained by using any timemarching scheme. For example, taking X0 = I ,
where I is the identity matrix and F (X) = X(I −A)X we have X(1) = A−1, so Forward Euler method as well as Runge Kutta
method can be applied to build inverse preconditioners of A, see [9].

However, in a number of situations, it can be difficult to model f (A) as the solution of the ODE at finite time and it is
interesting to link f (A) to a stable steady state, see [9,10]. Defining X = f (A) as an asymptotically stable root of F , say
F (X) = 0 ⇐⇒ X = f (A) and assuming that the eigenvalues of the differential of F at f (A), DF (A), have a strictly
negative real part, we can consider the differential equation

dX
dt

= F (X(t)), t > 0,

X(0) = f (X0).

(3)

This modeling allows the computation of sparse approximations to f (A) by defining an associate sparse matrix flow,
see [9].

Hence, if a differential system possessesF (A) as an asymptotical steady state, it is possible to compute numericallyF (A)
by applying an explicit time marching scheme. The efficiency of the method depends both on the dynamical properties of
the differential system and on the numerical scheme in time.

Parallel methods in time have been introduced and developed as amean to solve time dependent problems using parallel
computing, they apply to the computation of the solution of an ODE at a given finite time. These methods were especially
devoted to the computation of f (A)b, where b is a given vector in Rn. Let us cite the recent Paraexp and Rational Krylov
methods [7,11], to name but a few. However, it must be noticed that these methods are direct but not well adapted to the
computation of f (A), furthermore they assume to have a knowledge of some rational expansions of f (z), z ∈ C which is
not always the case. The Parareal Method (PM) is iterative and it can be seen as a multi-steps shooting scheme, where each
step can be solved in parallel. Firstly designed for parabolic-like problems, PM has been successfully adapted to second
order evolutive PDE, see [12–14] but little attention was given for their application in numerical linear algebra and themain
purpose of this article is to show that interesting issues can be derived for evaluating f (A).

In this article, we consider a framework in which the parallel computation of functions of matrices can be applied, we
focus on PM for which we propose adaptations and implementations for computing numerical approximations of matrix
functions. The article is organized as follows: in Section 2 we recall some parallel in time methods including the classical
parareal algorithmwhichwe apply to solve Eq. (4) in order to compute thematrix function f (A) of amatrixA.Wenumerically
illustrate the algorithm by approximating the inverse and the exponential of a matrix. In Section 3, we propose a version
of the modified parareal algorithm seen as a multiple shooting method as described in [14], adapted here to the matricial
computations. Using this algorithm, we compute the cosine of a matrix and we compare the results obtained with this
algorithm to the case when the cosine is obtained using the classical parareal algorithm. We can notice that the modified
parareal algorithmproduces an acceleration for the convergence. In Section 4we consider the casewhen thematrix function
is found as the stable steady state of an ordinary differential equation.We propose somemethods allowing to accelerate the
convergence in time, in order to efficiently compute the steady state. Section 5 presents a particular acceleration procedure
in order to converge to the steady state. The idea is to obtain thematrix function as a solution of an optimal control problem
and to apply a parareal in time method in order to solve the control problem, as proposed by [15].

All the numerical computations presented here have been made with Matlab.

2. Parallel algorithms applied to the computation of matrix functions

Before focusing on the application of the parareal method to the numerical evaluation of functions of matrices, we recall
briefly some special parallel algorithms in time for solving numerically the equation:

du
dt

= Au + g,

u(0) = u0,

(4)

and where one needs to be able to evaluate exp(tA)b for a certain given vector b.
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