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a b s t r a c t

In this paper, we investigate the dynamics of a class of diffusive Lotka–Volterra equation
with time delay subject to the homogeneous Dirichlet boundary condition in a bounded
domain. The existence of spatially nonhomogeneous steady state solution is investigated by
applying Lyapunov–Schmidt reduction. The stability and nonexistence of Hopf bifurcation
at the spatially nonhomogeneous steady-state solution with the changes of a specific
parameter are obtained by analyzing the distribution of the eigenvalues. Moreover, we
illustrate our general results by applications to models with a single delay and one-
dimensional spatial domain.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To describe the interactions between the species, some first-order ordinary differential equations (ODEs) of predator–
prey type were formulated by American chemist and biologist Alfred James Lotka in 1920 [1], and Italian mathematician
Vito Volterra in 1926 [2]. The simplest form of these equations is

du
dt

= lu − Buv,

dv
dt

= −mv + Cuv,
(1.1)

which was regarded as a prototypical predator–prey system in the ecological studies. The coefficients l,m, B, C are positive
constants, where l is the intrinsic growth rate of the prey;m is the death rate of the predator; B and C represent the strength
of the relative effect of the interaction on the two species.

Later, in order to make the model adapt to a wider species and reflect the interaction more accurately, Volterra [3]
modified system (1.1) as

du
dt

= lu − Au2
− Buv,

dv
dt

= mv − Dv2 + Cuv,
(1.2)
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where l, A, B, C , D ≥ 0, and m ∈ R. Here, l, B, C have the same meaning as system (1.1), m represents the death rate of
the predator (respectively, the intrinsic growth rate of the predator) if m < 0 (respectively, m > 0), and A measures the
strength of competition among individuals of species u, D has a similar meaning to A.

The Lotka–Volterra predator–prey model (1.2) possesses a unique coexistence steady-state solution (u∗, v∗) when
D ≥ 0, and (u∗, v∗) is globally asymptotically stable when D > 0 (a complete phase plane analysis of (1.2) can be
found in, for example, [4] or [5]). Biologists have observed that some predator–prey interactions lead to a system with a
stable equilibrium, however, some others do not, and there exists an ecological process which destabilizes the coexisting
equilibrium. In view of the limited ability of a predator to consume its prey, a general functional response of the predator
φ(u)was introduced by Solomon [6] and Holling [7,8] so that the classical Lotka–Volterra model is modified as

du
dt

= lu − Au2
− Bφ(u)v,

dv
dt

= mv − Dv2 + Cφ(u)v.
(1.3)

Here φ(u) is a positive and nondecreasing function of u (prey density). Note that system (1.2) is a special case of (1.3) when
φ(u) = u, and that φ(u) may have many possible choices such as the Holling type-II functional response which is most
commonly used in the ecological literature and is defined by

φ(u) =
u

1 + ku
,

where k is a positive constantmeasuring the ability of a generic predator to kill and consume a generic prey.Whenm < 0 and
D = 0, system (1.3) becomes the Rosenzweig–MacArthurmodel, which iswidely used in real-life ecological applications [9];
whenm < 0 and D > 0, the model was used by Bazykin [10,11].

In the aforementioned literature, the functional response φ(u) is assumed to be governed by a principle of causality, that
is, the future state of the functional response of the predator φ(u) is independent of the past states and is determined solely
by the present. However, a realistic model would include some of past states of the functional response of the predator, one
can refer to [12–17]. Based on these motivations, much attention has been drawn to study the functional response of the
predator with delay effect, i.e., replacing φ(u(t, x)) in the second equation of (1.3) by φ(u(t − τ , x)), is better to reflect the
interactions exactly than the functional response without delay effect.

On the other hand, the spatial component of ecological interactions has been identified as an important factor in how
ecological communities are shaped, and understanding the role of space is challenging both theoretically and empirically
[18–22]. Recently the studies on problems of the delayed reaction–diffusion equations have attracted many researchers’
attention over the given spatial domain, one can refer to [23–25,13,14,26–36] and the references therein. In this paper, we
will study the following reaction–diffusion predator–prey model with delay effect under the Dirichlet boundary condition

∂u(t, x)
∂t

= d1u(t, x)+ lu(t, x)− Au2(t, x)− Bφ(u(t, x))v(t, x), x ∈ Ω, t ≥ 0,

∂v(t, x)
∂t

= d1v(t, x)+ mv(t, x)− Dv2(t, x)+ Cφ(u(t − τ , x))v(t, x), x ∈ Ω, t ≥ 0,

u(t, x) = v(t, x) = 0, x ∈ ∂Ω, t ≥ 0,

(1.4)

where A, B, C , and D are strictly positive,∆ denotes the Laplacian operator, d is the diffusion coefficient. In biological terms,
u and v can be interpreted as the densities of prey and predator populations, respectively, and A,D self-limitation constants.
In the absence of predators and the diffusion effect, the prey species follows the logistic equation du

dt = u[l−Au], with l being
the intrinsic growth rate of the prey and A being strictly positive for species with self-limitation. In the presence of preda-
tors and the diffusion effect, there is a hunting term Bφ(u) (B > 0), where φ is a positive and nondecreasing function. In the
absence of prey species and the diffusion effect, the predator species also follows the logistic equation dv

dt = v[m−Dv], with
m being the intrinsic growth rate of the predator and D being strictly positive for species with self-limitation. The positive
feedback Cφ(u(t − τ)) has a positive delay τ which represents the time of the predator maturation.

Many researchers have been concentrating on the dynamics of spatially homogeneous steady state solutions of diffusive
systems, for example, Faria [37] considered a delay diffusive predator–prey system with one delay and a unique positive
homogeneous steady state solution E∗. Faria [37] studied the local stability of E∗ and described the Hopf bifurcation
which occurs as the delay (taken as a parameter) crosses some critical values. Yi et al. [38] investigated a homogeneous
reaction–diffusion model describing the control growth of mammalian hair, and found that when one of the dimensionless
parameter is less than one, the unique positive homogeneous steady-state solution is globally asymptotically stable. Li and
Li [39] studied a stage-structured predator–prey systemwith Holling type-III functional response and time delay due to the
gestation of the predator and obtained the existence of a Hopf bifurcation at the homogeneous steady-state solution.

Recently, Kuto and Tsujikawa [40] employed Leray–Schauder degree theory and obtained the existence of spatially
nonhomogeneous solutions by regarding the diffusion coefficient d as a bifurcation parameter. Yi et al. [38] found that
both spatially homogeneous and heterogeneous oscillatory solutions can be seen by using the composite form of some
spatially independent parameters as a bifurcation parameter. As we known, nontrivial steady-state solutions and periodic
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