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a b s t r a c t

Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-
dimensional problems. They are often referred to as a meshfree method and can be
spectrally accurate. The best accuracy can often be achieved when the so-called shape
parameter of the basis functions is small, which in turn tends to make the interpolation
matrix increasingly ill-conditioned. To overcome such instability in the numerical method,
which arises for even the most stable problems, one needs to stabilize the method. In
this paper we present a new stable method for evaluating Gaussian radial basis function
interpolants based on the eigenfunction expansion for Gaussian RBFs. This work enhances
the ideas proposed in Fasshauer and McCourt (2012), by exploiting the properties of the
orthogonal eigenfunctions and their zeros. We develop our approach in one and two-
dimensional spaces, with the extension to higher dimensions proceeding analogously. In
the univariate setting the orthogonality of the eigenfunctions and our special collocation
locations give rise to easily computable cardinal basis functions. The accuracy, robustness
and computational efficiency of the method are tested by numerically solving several
interpolation and boundary value problems in one and two dimensions. High accuracy,
simple implementation and low complexity for high-dimensional problems are the
advantages of our approach. On the down side, our method is currently limited to the use
of tensor products of unevenly spaced one-dimensional data locations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past three decades, radial basis functions (RBFs) have been used in many branches of science such as numerical
analysis, statistics, geophysics, astrophysics, quantummechanics, etc. So far, several books have been written on the theory
and implementation of RBFs (see [1–5]). Radial basis functions are a powerful tool for interpolation and approximation
of high-dimensional problems, and also for the solution of partial differential equations (PDEs) with scattered collocation
points. One of the big advantages of using RBF is the spectral convergence rate that can be achieved when using infinitely
smooth basis functions such as Gaussians. The best accuracy can often be achieved when the shape parameter in the basis
function is small, i.e. when the RBF is near-flat. But as the shape parameter becomes small, the interpolant matrix becomes
increasingly ill-conditioned. For many years, researchers mistakenly believed that the error and the condition number
cannot both be kept small simultaneously. This is known as the uncertainty principle, see [6]. Today, however, we know
that the uncertainty principle applies when one uses the direct or standard basis method to express the RBF interpolant.
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This insight has led to a growing number of stable approaches to overcome this problem. The first approach was the
Contour-Padé approach derived by Fornberg andWright [7]. The algorithm stably calculates the RBF approximant for small
values of the shape parameter in any number of dimensions, but it is limited to a small number of collocation points. Another
approach is the RBF-QRmethodwhichwas introduced by Fornberg and Piret in 2007 for the casewhen the collocation points
are distributed over the surface of a sphere [8]. The RBF-QR method for interpolation with Gaussian kernels was extended
to more general domains in [9,10] using products of Chebyshev polynomials and spherical harmonics. A fundamental
difference between various alternate (and potentially stable) basis approaches for kernel methods comes down to whether
the kernel matrix K is formed and then operated upon to obtain a QR or SVD factorization such as [11,12], or whether a
stable factorization of K is constructed by starting with a given series expansion of the kernel K , such as [13,9]. In [13],
Fasshauer and McCourt developed a variant of the RBF-QR method by using an eigenfunction expansion of the Gaussian
RBF. By considering the Gaussian as a special case of a positive definite kernel they established a connection between the
RBF-QR algorithm and Mercer’s theorem. McCourt [14] used this Gaussian eigenfunction approach to solve boundary value
problems. In [11], an alternate stable basis derived via a weighted singular value decomposition of the kernel matrix was
presented.

In this paper, we enhance the eigenfunction expansion approach for evaluating Gaussian RBF interpolants by taking
advantage of the orthogonality of the eigenfunctions and collocating at their zeros. This allows us to construct a new stable
factorization of the interpolation matrix K (without actually forming K and then decomposing it). Similar to the works
[13,9], we employ series expansions to eliminate the destructive effect of a very small shape parameter, which is known to
be one of the sources of ill-conditioning. We apply the method for interpolation of function values and collocation solution
of boundary value problems in one and two space dimensions.

The rest of the paper is organized as follows. In the next section we will present some preliminary concepts about
eigenfunction expansions. Our new stable method for Gaussian RBF interpolation is investigated in Section 3. The solution
of boundary value problems using RBF-based collocation is investigated in Section 4 and finally some numerical results that
illustrate the accuracy and efficiency of the proposed method are included in Section 5.

2. Eigenfunction expansion for Gaussian RBFs

Before discussing the eigenfunction expansion of Gaussian RBFs, we present a brief summary about Hermite polynomials.
For each n ∈ N0, the function Hn : R → R defined by Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x2 , (1)

is known as Hermite polynomial of degree n. These polynomials also satisfy the following recursion relation:
Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 0,
H−1(x) = 0, H0(x) = 1.

The set {Hn : n ∈ N0} is orthogonal with respect to the weight e−x2 :
∞

−∞

e−x2Hn(x)Hm(x)dx = 2nn!
√

πδmn.

In order to obtain an accurate approximate solution, it is better to normalize the Hermite polynomials. In this paper we use
the normalized Hermite polynomials defined byHn(x) =

1
√
2nn!

Hn(x).
According to Mercer’s theorem, every positive definite kernel K : Ω × Ω → R, where Ω ⊆ Rd, can be represented in

terms of the (positive) eigenvalues λn and (normalized) eigenfunctions ϕn of an associated compact integral operator [15],
i.e.,

K(x, z) =

∞
n=1

λnϕn(x)ϕn(z).

Since the Gaussian RBF is a positive definite kernel we have

e−ε2(x−z)2
=

∞
n=1

λnϕn(x)ϕn(z),

where the ϕn are orthogonal functions with respect to the weight function ρ(x) =
α

√
π
e−α2x2 , and

ϕn(x) =


βe−δ2x2Hn−1(αβx). (2)

The parameter ε which controls the flatness of the kernel, is called the shape parameter and the parameter α which acts
on the same scale as ε, is called the global scale parameter [16,13]. While these two parameters are arbitrary inputs to our
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