Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/camwa)

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems

a b s t r a c t

Sebastian Franz [∗](#page-0-0) , Hans-Görg Roos

Institut für Numerische Mathematik, Technische Universität Dresden, 01062 Dresden, Germany

ARTICLE INFO

Article history: Received 6 November 2015 Received in revised form 14 April 2016 Accepted 3 May 2016 Available online 24 May 2016

Keywords: Singular perturbation Fourth order problem Mixed-method Boundary layers Layer-adapted meshes Balanced norms

1. Introduction

We mainly consider the singularly perturbed plate bending problem given by the fourth-order differential equation

$$
\varepsilon^2 \Delta^2 u - b \Delta u + (c \cdot \nabla) u + du = f \quad \text{in } \Omega := (0, 1)^2,
$$
\n
$$
(1a)
$$

where $b \ge b_0 > 1$, $d - \frac{1}{2}$ (div $c + \Delta b$) $\ge \delta > 0$ and $f \in L^2(\Omega)$ are smooth functions, with the boundary conditions

$$
u = \frac{\partial u}{\partial n} = 0 \quad \text{on } \Gamma := \partial \Omega. \tag{1b}
$$

This is a model for the so-called clamped plate. With the usual weak formulation we immediately have a unique solution $u \in H_0^2(\Omega)$. But a conforming finite element discretisation requires C¹-elements, see i.e. [\[1\]](#page--1-0), which are less popular in 2d. Therefore, mixed or non-conforming methods are widely used. In this paper we want to study mixed methods.

Using in the non-singularly perturbed case ($\varepsilon = 1$) a p-th order finite-element approximation for *u* and $w = \Delta u$ results in an error estimate

$$
||u - u_h||_1 + h||w - w_h||_0 \leq Ch^p ||u||_{p+1}
$$
\n(2)

for the discrete solutions u_h and w_h on a standard shape-regular mesh with $p \ge 2$, see, for instance, [\[2,](#page--1-1)[3\]](#page--1-2). We use the standard notation of Sobolev spaces, where $\|\cdot\|_0$ is the L^2 -norm, $|\cdot|_k$ the seminorm in H^k and $\|\cdot\|_k$ the full H^k -norm. Furthermore, we denote by $\langle u,v\rangle_D$ the L^2 -scalar product over a domain $D\subset\varOmega$. If $D=\varOmega$ we drop the subscript. In the singularly perturbed

∗ Corresponding author.

<http://dx.doi.org/10.1016/j.camwa.2016.05.001> 0898-1221/© 2016 Elsevier Ltd. All rights reserved.

We consider singularly perturbed fourth order problems in two dimensions. Under assumptions on the structure of their solutions, we construct layer-adapted meshes and prove for a mixed-method convergence and supercloseness in the associated energy norms as well as convergence in balanced norms.

© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: sebastian.franz@tu-dresden.de (S. Franz), hans-goerg.roos@tu-dresden.de (H.-G. Roos).

case the boundary layers of problem [\(1\),](#page-0-1) even if the layers are weak, lead to $||u||_{p+1} \to \infty$ for $\varepsilon \to 0$ and $p \ge 2$. Thus, the estimate [\(2\)](#page-0-2) becomes worthless in this scenario.

In this paper we use layer-adapted meshes with a number of cells of order *N* 2 . Then we are able to prove for problem [\(1\)](#page-0-1) with $b > 0$ the robust error estimate (see Section [3\)](#page--1-3)

$$
||u - u_h||_1 + \varepsilon ||w - w_h||_0 \leq C(\varepsilon^{1/2} + N^{-1} \ln N)(N^{-1} \ln N)^{p-1},
$$
\n(3)

where here and further on *C* denotes a generic constant independent of ε and *N*. This result can be improved using supercloseness properties for \mathcal{Q}_p -elements to robust *p*-th order convergence. Finally, we also estimate the error in a socalled balanced norm.

For non-conforming methods, some robust error estimates on standard meshes are known $[4-7]$ but characterised by a low order (1/2). Layer-adapted meshes are to our knowledge only investigated in combination with the C⁰-interior penalty method $[8]$, resulting in an error estimate similar to (3) . For our mixed method however, we can additionally prove supercloseness for ω_p -elements and estimate in a balanced norm. Both of these results are open questions for the *C*⁰-interior penalty method.

In Section [4](#page--1-6) we apply the techniques of Section [3](#page--1-3) to two other problems. First we investigate a problem modelling the simply supported plate: Eq. $(1a)$ together with the boundary conditions

$$
\tilde{u} = \Delta \tilde{u} = 0 \quad \text{on } \Gamma. \tag{1c}
$$

In Section [4.2](#page--1-7) we consider the ''reaction–diffusion-type'' problem

$$
\varepsilon^2 \Delta \check{u} + d\check{u} = f \quad \text{in } \Omega
$$

with $d \geq \delta > 1$ and the boundary conditions [\(1b\)](#page-0-3) or [\(1c\).](#page-1-1) This problem is characterised by strong boundary layers and we have to modify the techniques from Section [3.](#page--1-3)

If $b\ge b_0>0$, in a rectangular domain we have $u\in H_0^2\cap H^4$, see [\[9\]](#page--1-8) and $\tilde u\in H_0^1\cap H^4$, see [\[10\]](#page--1-9). The same holds for $\check u$ if $d > \delta > 0$.

2. Solution decomposition and meshes

Asymptotic expansions for higher-order elliptic singularly perturbed problems are known in smooth domains [\[11\]](#page--1-10). In this case only boundary layers exist. From second-order problems it is known, that in domains with corners additional corner layers arise. The proof of the existence of solutions of the corner-layer equations for reaction–diffusion problems is extremely complicated, see [\[12,](#page--1-11) Section 3.2]. For higher-order problems this is an open problem.

We simply prescribe the layer structure analogously to the results for second-order equations and assume (requiring additional smoothness of the solution and the data) that the solution *u* of problem $(1a) + (1b)$ $(1a) + (1b)$ $(1a) + (1b)$ can be decomposed into a smooth part, boundary layers and corner layers:

$$
u = S + E_1 + E_2 + E_3 + E_4 + E_{12} + E_{23} + E_{34} + E_{41} = S + \sum_{k \in J} E_k,
$$
\n⁽⁴⁾

where $I = \{1, 2, 3, 4, 12, 23, 34, 41\}$. Here *S* stands for the smooth part, E_k with $k = 1, 2, 3, 4$ for a boundary layer and E_k with $k = 12, 23, 34, 41$ for a corner layer. More precisely, we assume

$$
\|\partial_x^i \partial_y^j S\|_0 \le C, \qquad |\partial_x^i \partial_y^j E_1(x, y)| \le C \varepsilon^{1-i} e^{-x/\varepsilon},
$$

$$
\|\partial_x^i \partial_y^j E_2(x, y)| \le C \varepsilon^{1-i} e^{-x/\varepsilon},
$$

$$
|\partial_x^i \partial_y^j E_1(x, y)| \le C \varepsilon^{1-i} e^{-x/\varepsilon} e^{-y/\varepsilon}
$$

and similarly for the other components of the decomposition. Similarly, we assume a decomposition for \tilde{u} with

$$
\tilde{u} = \tilde{S} + \sum_{i \in I} \tilde{E}_i \tag{5}
$$

,

,

where

|∂

$$
\|\partial_x^i \partial_y^j \tilde{S}\|_0 \le C, \qquad \qquad |\partial_x^i \partial_y^j \tilde{E}_1(x, y)| \le C \varepsilon^{2-i} e^{-x/\varepsilon},
$$

$$
|\partial_x^i \partial_y^j \tilde{E}_2(x, y)| \le C \varepsilon^{2-j} e^{-y/\varepsilon}, \qquad |\partial_x^i \partial_y^j \tilde{E}_{12}(x, y)| \le C \varepsilon^{2-i-j} e^{-x/\varepsilon} e^{-y/\varepsilon}
$$

and similarly for the other components of the decomposition.

Remark 2.1. In the following numerical analysis we need the estimates from above assumptions in a *L* 2 (*D*)-sense for non-empty subdomains $D \subset \Omega$ for $i + j = p + 1$ and in the supercloseness analysis additionally for $i = 1, 2$ and $j = p + 1$ as well as $i = 1$ and $j = p + 2$ and the pairs with interchanged *i* and *j*.

The pointwise estimates for the layer components are essentially only needed for $i + j = 0$, 1 and in the supercloseness analysis additionally for $i = 1$ and $j = p + 1$, and $i = p + 1$ and $j = 1$.

Download English Version:

<https://daneshyari.com/en/article/470723>

Download Persian Version:

<https://daneshyari.com/article/470723>

[Daneshyari.com](https://daneshyari.com/)