Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

In this study, we investigate positive integer solutions of the Diophantine equations x^2 –

 $kxy \pm y^2 \pm x = 0$ and $x^2 - kxy + y^2 \pm y = 0$. It is shown that when k > 3, $x^2 - kxy + y^2 + x = 0$

has no positive integer solutions but the equation $x^2 - kxy + y^2 - x = 0$ has positive

integer solutions. Moreover, it is shown that the equations $x^2 - kxy - y^2 \mp x = 0$ and

Solutions of some quadratic Diophantine equations

Refik Keskin

Sakarya University, Faculty of Science and Arts, Department of Mathematics, Sakarya, Turkey

ARTICLE INFO

ABSTRACT

Article history: Received 6 May 2009 Received in revised form 6 August 2010 Accepted 6 August 2010

Keywords: Diophantine equations Fibonacci and Lucas numbers Generalized Fibonacci numbers

1. Introduction

In [1], the authors dealt with the equation

$$x^2 - kxy + y^2 + x = 0$$

and they showed that Eq. (1.1) has no positive integer solutions *x* and *y* when k > 3 but Eq. (1.1) has an infinite number of positive integer solutions *x* and *y* when k = 3. When k = 3, they gave a process giving an infinite set of positive solutions of Eq. (1.1). Moreover, they guess that when k = 3, all the positive integer solutions of Eq. (1.1) are of the form $(x, y) = (F_{2n-1}^2, F_{2n-1}F_{2n-3})$ or $(x, y) = (F_{2n-1}^2, F_{2n-1}F_{2n+1})$ where F_n is the *n*th Fibonacci number.

In this study, we consider the equations

$$x^2 - kxy + y^2 \mp x = 0, \tag{1.2}$$

 $x^2 - kxy - y^2 \mp y = 0$ have positive solutions when $k \ge 1$.

$$x^2 - kxy - y^2 \mp x = 0, \tag{1.3}$$

and other similar equations. Firstly, we will find all positive integer solutions of the equation

$$x^2 - 3xy + y^2 \mp x = 0.$$

Then we will find all positive integer solutions of the equations

$$x^2 - xy - y^2 \mp 5x = 0 \tag{1.4}$$

and

$$x^2 - 3xy + y^2 \mp 5x = 0. \tag{1.5}$$

Moreover, we will find all positive integer solutions of the equations

$$x^2 - xy - y^2 \mp x = 0$$

and

 $x^2 - xy - y^2 \mp y = 0.$

(1.1)

© 2010 Elsevier Ltd. All rights reserved.

E-mail address: rkeskin@sakarya.edu.tr.

^{0898-1221/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2010.08.012

Lastly, when k > 3, we will show that Eq. (1.1) has no positive integer solutions but the equation $x^2 - kxy + y^2 - x = 0$ has positive integer solutions. Moreover, we will show that the equations $x^2 - kxy - y^2 \mp x = 0$ and $x^2 - kxy - y^2 \mp y = 0$ have positive solutions when $k \ge 1$.

Solutions of some of the above equations are related to the Fibonacci numbers. Now we briefly mention the Fibonacci sequence $\{F_n\}$. The Fibonacci sequence $\{F_n\}$ is defined by $F_0 = 0$, $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. F_n is called the *n*th Fibonacci number. Fibonacci numbers for negative subscripts are defined as $F_{-n} = (-1)^n F_n$ for $n \ge 1$. It is well known that $F_{n+1} = F_n + F_{n-1}$ for every $n \in \mathbb{Z}$. For more information about Fibonacci sequence one can consult [2,3]. Let α and β denote the roots of the equation $x^2 - x - 1 = 0$. Then $\alpha = (1 + \sqrt{5})/2$ and $\beta = (1 - \sqrt{5})/2$. It can be seen that $\alpha\beta = -1$ and $\alpha + \beta = 1$. Moreover it is well known and easy to show that

$$\alpha^n = \alpha F_n + F_{n-1} \tag{1.6}$$

and

 $\beta^n = \beta F_n + F_{n-1}$

for every $n \in \mathbb{Z}$. On the other hand, it can be shown by induction that

$$F_n^2 - F_n F_{n-1} - F_{n-1}^2 = (-1)^{n+1}$$
(1.7)

for every $n \in \mathbb{Z}$. Now we give a theorem from [4], which is related to the set of the units of the ring $\mathbb{Z}[\alpha]$ where $\mathbb{Z}[\alpha] = \{a\alpha + b : a, b \in \mathbb{Z}\}.$

Theorem 1.1. The set of the units of $\mathbb{Z}[\alpha]$ is $\{\mp \alpha^n : n \in \mathbb{Z}\}$.

Using the above theorem and identity (1.7), we can give the following theorem. The proof of the theorem can be found in [3] but for the sake of completeness, we will give its proof in a different way.

Theorem 1.2. All positive integer solutions of the equation $x^2 - xy - y^2 = \mp 1$ are given by $(x, y) = (F_n, F_{n-1})$ with $n \ge 2$. **Proof.** If $(x, y) = (F_n, F_{n-1})$, then from identity (1.7), it follows that $x^2 - xy - y^2 = \mp 1$. Now assume that $x^2 - xy - y^2 = \mp 1$ for some positive integers x and y. Then $\alpha x + y > 1$ and $(\alpha x + y)(\beta x + y) = \mp 1$. This shows that $\alpha x + y$ is a unit in $\mathbb{Z}[\alpha]$. Then, by Theorem 1.1, $\alpha x + y = \alpha^n$ for some $n \ge 2$. Thus $\alpha x + y = \alpha F_n + F_{n-1}$, which implies that $(x, y) = (F_n, F_{n-1})$. \Box

Corollary 1.3. All positive integer solutions of the equation $x^2 - xy - y^2 = 1$ are given by $(x, y) = (F_{2n+1}, F_{2n})$ with $n \ge 1$.

Corollary 1.4. All positive integer solutions of the equation $x^2 - xy - y^2 = -1$ are given by $(x, y) = (F_{2n}, F_{2n-1})$ with $n \ge 1$.

Theorem 1.5. All positive integer solutions of the equation $x^2 - 3xy + y^2 = 1$ are given by $(x, y) = (F_{2n+2}, F_{2n})$ with $n \ge 1$.

Proof. Assume that $x^2 - 3xy + y^2 = 1$ for some positive integers *x* and *y*. Without loss of generality we may suppose that x > y. Then $(x - y)^2 - y(x - y) - y^2 = x^2 - 3xy + y^2 = 1$ and therefore $(x - y, y) = (F_{2n+1}, F_{2n})$ with $n \ge 1$, by Corollary 1.3. That is, $x - y = F_{2n+1}$ and $y = F_{2n}$. This implies that $x = F_{2n+1} + y = F_{2n+1} + F_{2n} = F_{2n+2}$. Therefore $(x, y) = (F_{2n+2}, F_{2n})$ with $n \ge 1$. Conversely, if $(x, y) = (F_{2n+2}, F_{2n})$, then using the identity $F_{2n+2} = F_{2n} + F_{2n-1}$ and identity (1.7) one can show that $x^2 - 3xy + y^2 = 1$. \Box

The proof of the following theorem is similar and therefore we omit it.

Theorem 1.6. All positive integer solutions of the equation $x^2 - 3xy + y^2 = -1$ are given by $(x, y) = (F_{2n+1}, F_{2n-1})$ with $n \ge 0$.

2. Main theorems

In this section we consider Eqs. (1.2)-(1.4), and other similar equations. Now we give the following theorem (see [1] for another proof).

Theorem 2.1. If positive integers x, y, k satisfy Eq. (1.2) or (1.3), then $x = u^2$ and y = uv for some positive integers u and v.

Proof. Assume that positive integers *x*, *y*, *k* satisfy Eq. (1.2). Then it follows that $x|y^2$ and therefore $y^2 = xz$ for some positive integer *z*. Assume that p|x and p|z for some prime number *p*. Then p|y and from (1.2), it is seen that $x - ky + z \mp 1 = 0$. This implies that p|1, which is a contradiction. Therefore gcd (x, z) = 1. This shows that $x = u^2$ and $z = v^2$ for some positive integers *u* and *v*. Then $y^2 = xz = u^2v^2 = (uv)^2$ and therefore y = uv. \Box

Theorem 2.2. All positive integer solutions of the equation $x^2 - 3xy + y^2 + x = 0$ are given by $(x, y) = (F_{2n+1}^2, F_{2n+1}F_{2n-1})$ or $(x, y) = (F_{2n-1}^2, F_{2n-1}F_{2n+1})$ with $n \ge 0$.

Proof. Assume that $x^2 - 3xy + y^2 + x = 0$ for some positive integers x and y. Then by Theorem 2.1, $x = u^2$ and y = uv for some positive integers u and v. Then it follows that $u^4 - 3u^3v + u^2v^2 + u^2 = 0$, which implies that $u^2 - 3uv + v^2 + 1 = 0$. That is, $u^2 - 3uv + v^2 = -1$. By Theorem 1.6, it follows that $(u, v) = (F_{2n+1}, F_{2n-1})$ or $(u, v) = (F_{2n-1}, F_{2n+1})$ with $n \ge 0$. This shows that $(x, y) = (F_{2n+1}^2, F_{2n-1})$ or $(x, y) = (F_{2n-1}^2, F_{2n-1})$ or $(x, y) = (F_{2n-1}^2, F_{2n-1}F_{2n-1})$ or $(x, y) = (F_{2n-1}^2, F_{2n-1}F_{2n-1})$ with $n \ge 0$, then from Theorem 1.6, it follows that $x^2 - 3xy + y^2 + x = 0$. \Box

Download English Version:

https://daneshyari.com/en/article/470731

Download Persian Version:

https://daneshyari.com/article/470731

Daneshyari.com