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a b s t r a c t

In this paper we present a numerical method to compute resonances and resonant modes
for 2D electromagnetic scattering at a smooth homogeneous dielectric object in free space.
The resonances are found as eigenvalues of a non-linear eigenvalue problem which comes
from a formulation as a boundary integral equation and subsequent discretization by a
Nystrømapproach, forwhich the integral kernels are regularizedby singularity subtraction.
The eigenvalues are computed by a predictor–corrector strategy, which provides good
initial guesses for an iterative corrector procedure. The resonances can be computed with
very high accuracy due to an exponentially decreasing discretization error.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-disc resonators have attractedmuch interest in photonics technology over the past yearswith various applications
(e.g. micro-lasers, optical amplifiers, switches and filters, [1–4] to cite only a few). Several different designs for micro-discs
have been studied experimentally and theoretically with emphasis on different topics such as e.g. unidirectional emission
or high Q -cavities [5,4,6]. An important tool to judge the performance and optical properties of a given micro-disc are the
associated scattering resonances.
In this paper we develop an efficient numerical strategy to compute scattering resonances of 2D dielectric objects with

high accuracy. These computations can be helpful and valuable for the development and design of novelmicrostructures, [7].

1.1. Scattering resonances

As model for a micro-disc resonator we consider a homogeneous dielectric rod with given cross-sectionΩ , cf. Fig. 1(a).
Assume that Ω ⊆ R2 is an open set in the (ξ1, ξ2)-plane and let Γ := ∂Ω be the boundary. Let x = (ξ1, ξ2, ξ3)

T
∈ R3

and ε(x) be the electric permittivity at x. Denote by E(t, x) = (E1(t, x), E2(t, x), E3(t, x))T the electric field and by
H(t, x) = (H1(t, x),H2(t, x),H3(t, x))T the magnetic field. The fields are coupled by Maxwell’s equations

ε(x)ε0
∂E
∂t
= ∇ × H

−µ0
∂H
∂t
= ∇ × E,

where ε0, µ0 are the electric andmagnetic constants. AssumeTM-polarization, i.e. themagnetic fieldH is transversal and the
electric field E is parallel to the cylinder axis ξ3. Thus, one has E1 = E2 = 0 and E3 depends only on ξ1 and ξ2, [3]. Therefore,
the problem reduces to the (ξ1, ξ2)-plane and we write in the following x = (ξ1, ξ2)T and E(t, x) for E3(t, ξ1, ξ2, ξ3) with
slight abuse of notation. Under these assumptions Maxwell’s equations simplify to the wave-equation

n2(x) ∂2t E(t, x) = 1E(t, x), (1.1)
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Fig. 1. (a) The micro-disc is modeled by a homogeneous dielectric rod. Assuming TM-polarization the electrical field is parallel to the cylinder axis ξ3 and
satisfies the wave-equation (1.1). (b) The problem reduces to the (ξ1, ξ2)-plane. One can distinguish between an interior domain Ω , which is the cross-
section of the resonator and an exterior domain R2 \ Ω̄ . The refractive index n(ξ1, ξ2) takes only two values, ni in the interior and ne in the exterior. It is
not defined at the interface Γ := ∂Ω .

where the function n(x) :=
√
ε(x) ·

√
ε0µ0 is the refraction index. Explicitly, we have,

n(x) =
{
ni : x ∈ Ω̄
ne : x 6∈ Ω

with constant index ni of the surrounding medium and constant index ne of the rod, cf. Fig. 1(b).
Of special interest for the mathematical analysis and physical applications are time-harmonic solutions of (1.1), which

satisfy radiation boundary conditions, [8]. One defines,

Definition 1.1. Scattering resonances are solutions to the eigenvalue equation satisfied by time-harmonic solutions E(x, t) =
e−iktu(x) of Eq. (1.1) subject to outgoing radiation conditions, imposed outside the cavity.

This means, we seek non-trivial u(x; k) and k, such that

1u(x; k)+ k2 n2(x)u(x; k) = 0, (1.2)

lim
r→∞

√
r
(
∂u
∂r
− iku

)
= 0, r = |x| (1.3)

is satisfied. The condition (1.3) is known as Sommerfeld’s radiation condition. It guarantees that for large r the field E(t, x) is
an outgoing cylindrical wave.
Due to the outgoing radiation conditions the above problem is not self-adjoint and the resonances k are complex valued

with Im k < 0. Energy can escape the resonator and is radiated away. This energy loss is measured by the Q -factor of the
resonance, which is defined by Q = − Re k

2Im k , [9]. Plugging in the resonance k with Im k < 0 in E(t, x) = e
−iktu(t, x) one

sees that Im k controls the rate of decay of the resonant mode. Therefore, one refers to Im k as the lifetime of the resonance
k. For applications, resonators with long-lived resonant modes are most essential, i.e. resonances close to the real axis are
required. Because Q is proportional to 1

Im k , the imaginary part of the resonance needs to be computedwith high accuracy, to
avoid large round-off errors inQ . This requires sophisticated computationalmethods, especially if the effectivewave-length
λ = 2π

ni·Re k
of the resonant mode is small compared to the diameter of the resonator.

1.2. Computational methods

To compute resonances and resonant modes of these structures numerically many simulation methods have been ap-
plied, including finite element method, finite differences [10,11], scatteringmatrix approach [12–14] and boundary integral
methods [15–17].
In this paper, we focus on a boundary integral discretization to find resonances and modes. For this kind of method

Eq. (1.2) is formulated as a boundary integral equation (BIE) using Green’s function. This approach has the advantage that
the boundary condition at infinity (1.3) has already been embedded in theGreen’s function,while FEMor FDneed to truncate
the exterior domain and have to apply artificial boundary condition, for example perfectly matched layers [18]. A second
advantage is the reduction to 1D boundary integrals, so that no triangulation of the 2D domain Ω is needed. The price to
pay is a full discretization matrix because the integral operators require global information in contrast to local differential
operators. Therefore, it is essential to find discretizations of the integral operators,which admit fast decreasing discretization
errors to keep the discretization matrix as small as possible. In our approach we use a singularity subtraction technique
together with a specialized quadrature rule for a Nystrøm discretization of the integral operators. This regularization causes
an exponentially decreasing discretization error.
With a BIE approach the resonances are found as eigenvalues of a non-linear eigenvalue problem arising from the

discretization matrix. To find an eigenvalue Wiersig [16] propose a Newton method and Cho et al. [17] a secant method.
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