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a b s t r a c t

In this paper, an iterativemethod is presented for the computation of regularized solutions
of discrete ill-posed problems. In the proposed method, the regularization problem is
formulated as an equality constrained minimization problem and an iterative Lagrange
method is used for its solution. The Lagrange iteration is terminated according to the
discrepancy principle. The relationship between the proposed approach and classical
Tikhonov regularization is discussed. Results of numerical experiments are presented to
illustrate the effectiveness and usefulness of the proposed method.
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1. Introduction

In many applications, the discretization of continuous ill-posed inverse problems, such as Fredholm integral equations
of the first kind, results in discrete ill-posed problems of the form

Ax = b (1)

where A ∈ Rn×n is a nonsingular ill-conditioned matrix.
The vector b is contaminated by noise and measurement errors, i.e.,

b = b̃+ e

where the noise-free vector b̃ is unavailable and e represents perturbations and measurement errors. The error norm

σ := ‖e‖

is assumed to be explicitly known. (Throughout this paper, ‖ · ‖ denotes the Euclidean norm.) Our aim is to compute a good
approximation of the solution x̃ of the noise-free linear system (1) even in the presence of noisy data b.
Due to the ill-conditioning of A and the noise contained in b, the direct solution x̂ of (1) is a poor approximation of x̃

and a regularization method is necessary in order to determine a useful approximation of x̃. (For thorough discussions on
regularization, please refer to [1–4] and the references therein.) Tikhonov regularization [5] is one of the most popular
regularization techniques. In this method, the original problem (1) is replaced by the least-squares problem

minimize
1
2
‖Ax− b‖2 +

µ

2
‖L(x− xguess)‖2 (2)
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whereµ is a positive regularization parameter, xguess is an a priori estimate of x̃ and L ∈ Rp×n, p ≤ n, is a full-rank regularizing
matrix containing prior information about the smoothness of the exact solution. For example, L can be the identity matrix
or the discrete approximation of the first-order or second-order derivative operators. In practice, xguess is usually set to zero
because no information on the solution is available.
The effectiveness of Tikhonov regularization strongly depends on a suitable choice of the regularization parameter µ

which determines the amount of regularization. In fact, if µ is too small, noise will dominate the solution, while if µ is too
large, the resulting solution will be too smooth. When the error norm σ is explicitly known, a popular and useful parameter
choice strategy is the discrepancy principle [1,6–8]. This principle states that the optimal regularization parameter µ gives a
regularized solution whose residual norm is equal to ρσ for some parameter ρ > 1.
Tikhonov regularization (2) can be equivalently reformulated as one of the following constrained optimization problems:

minimize
1
2
‖Lx‖2

subject to
1
2
‖Ax− b‖2 =

σ 2

2

(3)

or

minimize
1
2
‖Ax− b‖2

subject to
1
2
‖Lx‖2 =

1
2
‖L̃x‖2.

(4)

It can be proved ([9] and the references therein) that problems (2)–(4) are equivalent when xguess = 0 provided that µ is
the exact Lagrange multiplier of (4) or the inverse of the exact Lagrange multiplier of (3). The advantage of the constrained
formulations (3) and (4) over the unconstrained one (2) consists in not requiring any prior estimate of the regularization
parameter but rather requiring an estimate of the error norm or the exact solution norm. In many applications, these
estimates are obtainable.
Both the noise constrained optimization problems (3) and (4) have been considered in the literature for the regularization

of discrete ill-posed problems. In [9], efficient algorithms based on a bidiagonalization of A are presented for (3) and (4).
In [10], the problem (4) is considered as a special case of the trust region subproblem from optimization and the LSTRS [11]
method for large-scale trust region subproblems is applied to (4). In [12,13], methods based on Gauss quadrature are
proposed for problem (4). In [14], a modular approach, involving the solution of a sequence of unconstrained problems
while adjusting the regularization parameter, is presented for the solution of (3). In [15], problem (3) is considered and
a Lagrange method [16,17] is proposed for its solution. The Lagrange method presented consists in solving the first-order
optimality conditions of (3) with respect to both the variable x and the Lagrange multiplier by means of an inexact Newton-
like method. The search direction is computed by approximately solving the Newton system of the first-order conditions
with the minimal residual (MINRES) method of Paige and Saunders [18] and the step length is determined by a constrained
line search involving a penalized merit function. The penalized merit function is introduced to penalize the constraint
violations. The constrained line search modifies the step length not only in order to ensure a sufficient decrease of the merit
function but also to ensure the positivity of the Lagrangemultiplier and the nonsingularity of the Newton system coefficient
matrix.
In this work, we propose a regularization strategy based on replacing the original problem (1) with the constrained

minimization problem

minimize
1
2
‖Lx‖2

subject to
1
2
‖Ax− b‖2 = 0

(5)

which is different from problems (3) and (4) proposed in the literature. A useful approximation to the true solution x̃ is
determined ‘‘by iteration with early stopping’’. An iterative Lagrange method is applied to (5) and a regularized solution of
(1) is obtained by stopping its iteration according to the discrepancy principle. That is, the Lagrange iterations are terminated
as soon as an iterate xk has been determined whose residual norm ‖Axk − b‖ is less than ρσ . We will refer to the proposed
regularization technique as the truncated Lagrange (TL) method.
Themain contribution of this work is to analyze the relationship between the proposed regularization strategy, based on

solving (5) with an iterative procedure, and classical Tikhonov regularization (2). In particular, in this work, we show that
the solution computed by the TL method solves a Tikhonov regularization problem of the form (2) where the regularization
parameter µ satisfies the discrepancy principle and xguess is a suitable estimate of the exact solution x̃.
We believe that themain advantage of the proposed approach over classical Tikhonov regularization (2) is that it removes

the indefiniteness of µ and xguess since both of these values are estimated during the iterations of the TL method. Only
the knowledge of the noise norm σ is necessary for use in the discrepancy principle. In practical applications, a useful a
priori estimate of the regularization parameter is often unavailable and, in spite of the numerous methods proposed in the
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