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a b s t r a c t

The present study deals with the numerical solution of the modified porous medium
equation when the solution is subject to some constraints. First of all, we use a change
of variables, which leads to an evolutive problem where the nonlinear part is constituted
by the derivative with respect to the time, of a diagonal increasing operator. Then, for
the numerical solution we consider an implicit time marching scheme, which leads to the
solution of a sequence of stationary problems. In fact each stationary problem is equivalent
to a constrainedminimizationproblem, and forDirichlet andDirichlet–Neumannboundary
conditions, we show the existence and the uniqueness of the solution of our stationary
constrained minimization problem. Moreover, classically, the solution of each stationary
constrained problem can be characterized by the solution of a multivalued one. The
spatial discretization of the previous problem leads to the solution of large scale algebraic
multivalued systems. Then we analyze in a unified approach the convergence of the
sequential and parallel relaxation projected methods. Finally we present the results of
numerical experiments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental principle of the theory of hydrodynamic limits is to study the evolution of the transition from
microscopic to macroscopic dynamics of particle systems. At the microscopic level the evolution of the particles is modeled
on the microscopic space Td

N by the random dynamic, where Td
N = {0, . . . ,N − 1}d is the discrete d-dimensional torus of

the size N .
The macroscopic hydrodynamic behavior of the system is described on the macroscopic space Ω = ([0, 1[)d, the d-

dimensional torus, and is obtained after the space scaling change of the microscopic system where the parameter of the
spatial scaling change is N−1. At the initial time, the particles are distributed according to the density u0 : Ω −→ R+; at the
time t the system is described by the density of particles ut : Ω −→ R+ which is the solution of the partial differential equa-
tion of the parabolic type under the previous scaling change called hydrodynamic equation, that governs the macroscopic
evolution of a fluid or a gas evolving in a volume fromamicroscopic dynamics at randomdue to the large number of particles.

In [1] Gonçalves, Landim and Toninelli established the hydrodynamic limit for some particle systems with degenerate
rates under exclusive constraints such that the macroscopic density profile evolves under the diffusive time scaling
according to a porous medium equation for initial profiles. Recently Sasada in [2] established, for conservative particle
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systems on the d-dimensional discrete torus Td
N with degenerate jump rates without restrictions on the total number

of particles per site, the same result according to a modified porous medium equation (MPME). For a large survey on
hydrodynamic limits, one may refer to Spohn [3] or Kipnis and Landim [4].

In the sequel we will denote by α, β, γ , . . . the elements of Td
N , x, y, . . . the elements ofΩ .

1.1. Motivation of the study

Let us consider a particle system which evolves according to a continuous time Markov process (ξt)t≥0 with state space
χd
N = NTd

N , where Td
N = {0, . . . ,N − 1}d is the d-dimensional torus (see [5]). Let ξ (α) denote a configuration in χd

N such
that ξ (α) = k if there are k particles at α. The process is defined through the function g (k) =

k
θ+k−1 : N −→ R+ vanishing

at 0, as described in [2] (see example 3.1), as follows. The moves of particles, which are subject to a speed represented by
g , during evolution of the system among nearest neighbors α and β occurred with rate c(α,β,ξ)

θ+ξ(α)−1 , where c (α, β, ξ) denotes

exchange rate. Namely, one of the particles at α jumps to β with rate kc(α,β,ξ)
θ+k−1 if there are k particles at a site α.

The dynamics of particles is defined by means of an infinitesimal generator acting on cylinder function f : χd
N −→ R as

(LN f ) (ξ) =


α,β∈Td

N ,|α−β|=1

ξ (α) .c (α, β, ξ)
θ + ξ + (α)− 1


f

ξα,β


− f (ξ)


,

where θ > 0 and |α − β| =


1≤i≤d
|αi − βi| is the sum norm in Rd and

ξα,β(γ ) =


ξ (γ ) if γ ≠ α, β
ξ (α)− 1 if γ = α
ξ (β)+ 1 if γ = β.

In [2] Sasada uses the relative entropy method to establish the hydrodynamic limit, which consists to identifying
the equations that give a description to the macroscopic scale phenomena considered, the data of a particle system
corresponding to the description at the microscopic scale and a kinetic equation which describes the system at the
macroscopic scale. In this model the equation in question is the modified porous medium equation given on the edgeΩ by

∂u (t, x)
∂t

= ∆


u (t, x)

u (t, x)+ θ

m
, (t, x) ∈ [0, T ] ×Ω

u (0, .) = φ (.)

(1)

wherem ∈ N\{0, 1} is the number of authorizedmoving of particles andφ is an initial profile onRΩ
+
of classC2+ε (Ω) , ε > 0

satisfying the bounded condition (δ0 ≤ φ (x) ≤ δ1), where δ0, δ1 are nonnegative constants.
By the theorem A 2.4.1 of [6], the equation (1) admits a solution u (t, x)which is of class C1+ε,2+ε ([0, T ] ×Ω) and
δ0 ≤ inf

t,x
u (t, x) ≤ sup

t,x
u (t, x) ≤ δ1. (2)

1.2. Presentation of the study

For Dirichlet and Dirichlet–Neumann boundary conditions, the goal of the present study is on one hand to prove the
existence and the uniqueness of the solution of the stationary continuous problem derived after appropriate temporal
discretization from the model problem (1) and on the other hand to solve by various general numerical relaxation methods
this previous system of equations.

Wehave to solve a strongly nonlinear problemwhere the solutionu is submitted to some constraints. After an appropriate
change of variables we have to solve a strongly nonlinear boundary value problem, where the operator arising after
transformation, is nowconstituted by a Laplacian perturbed by the derivativewith respect to the time of a diagonal nonlinear
increasing operator; moreover the new resulting changed solution, now denoted by v, is also subject to some constraints.

Since the previous resulting boundary value problem is always time dependent, we consider a temporal discretization
by an implicit time marching scheme; thus, at each time step, we have to solve a sequence of stationary nonlinear and
constrained problems.

Since the linear part constituted by a Laplacian is self adjoint we can formulate the transformed problem like a
constrained minimization problem on a closed convex set. Then, we can verify by a direct way that the constrained
stationary minimization problem has a unique solution for classical boundary conditions, i.e. Dirichlet boundary condition
and Dirichlet–Neumann boundary condition; nevertheless note that we can also obtain the same result by applying directly
a classical result of [7]. Note that such result is not valid when the model problem is equipped with Neumann boundary
condition or Fourier (or Robin) boundary conditions.

Nevertheless, the previous formulation of the constrained optimization problem is not easy to use when, after spatial
discretization by classical finite difference schemes, we consider the numerical solution of the discrete model problem,
particularly for the analysis of the behavior of the iterative algorithm used to solve the model problem.
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