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a b s t r a c t

Pentadiagonal Toeplitz matrices frequently arise in many application areas and have been
attracted much attention in recent years. In this paper, we present a numerical algorithm
of O(log n) for computing the determinants of general pentadiagonal Toeplitz matrices
without imposing any restrictive conditions. In addition, we investigate some special
pentadiagonal Toeplitz determinants and their relations towell-knownnumber sequences,
and give a few identity formulas for the ordinary Fibonacci sequences and the generalized
k-Fibonacci sequences.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In general, a pentadiagonal Toeplitz (PT) matrix is defined as having zeros everywhere except in its five principal
diagonals, with each principal diagonal having the same element in all positions. For notational purpose, we often choose
to write this matrix in the single line form, i.e., P = [e, d, a, b, c].

From theoretical point of view, a recursive relation of one of the computational formulas for PT determinants is used in
the inverse problem of constructing symmetric PT matrices from three largest eigenvalues [1,2]. Moreover, it is known that
there are close relations between determinants of special PT matrices and somewell-known number sequences such as Pell
sequence, Jacobsthal sequence, Fibonacci sequence and k-Fibonacci sequence, see [3,4]. On the other hand, from practical
point of view, PT matrices frequently arise from boundary value problems (BVP) involving fourth order derivatives and fast
computational formulas for the determinants are required to test efficiently the existence of unique solutions of the PDEs,
see, e.g., [5–7].

Usually, the determinant of an n-by-n PT matrix Pn can be computed by the Leibniz formula

det(Pn) =


σ∈Sn

sgn(σ )

n
i=1

aσ(i),i,
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where sgn(·) is the sign function of permutation in the permutation group Sn. Also, the determinant of the matrix can be
given by

det(Pn) =

n
i=1

(−1)i+jaijMij,

whereMij is the (i, j)-minor of Pn. This is the well-known Laplace formula (also called cofactor expansion) in linear algebra.
However, methods of implementing an algorithm to compute the determinant by using the above formulas are extremely
inefficient for large matrices, since the number of required operations grows very quickly. For example, Leibniz formula
requires to calculate n! products.

Recently, some authors have devised numerical (or symbolic) algorithms for PT determinants, see [8–12]. And, the
algorithms given in these references require 11n−17, 9n+3, 8n+10, 56⌊ n−4

k ⌋+30k+O(log n),O( 3
2k

2 log2
n
k +s3) operations,

respectively. For related works such as computing the inverse, determinants and eigenvalues of general pentadiagonal
matrices, and solving the pentadiagonal linear systems, see e.g., [13–24] and references therein. The motivation of this
paper is to develop a new computational algorithm (with less complexity) for computing the nth order PT determinants.

The remaining part of this paper is organized as follows: In Section 2, we propose an algorithm for the general PT
determinants and discuss its computational costs. Illustrative examples and remarks are also given. In addition, we present
a few identity formulas for the ordinary Fibonacci sequence and the generalized k-Fibonacci sequence. Some concluding
remarks are offered in Section 3.

2. Main results

In this section, we will develop a numerical algorithm for computing the PT determinants without imposing any
restrictive conditions. Below, we introduce two auxiliary matrices for later use.

Qi :=


Q11 Q12
Q21 Q22


∈ Ri×i, Ri :=


R11 R12
R21 R22


∈ Ri×i, i ≥ 4,

where Q11 = d ∈ R, Q12 = [b, c, 0, . . . , 0] ∈ R1×(i−1), Q21 = [e, 0, . . . , 0]T ∈ R(i−1)×1, Q22 = Pi−1 ∈ R(i−1)×(i−1), R11 =
d a
e d


∈ R2×2, R12 =


c 0 0 · · · 0
b c 0 · · · 0


∈ R2×(i−2), R21 =


0 0 · · · 0
e 0 · · · 0

T
∈ R(i−2)×2, and R22 = Pi−2 ∈ R(i−2)×(i−2).

Here, the superscript symbol T corresponds to the transpose operation, and Pi denotes the i-by-i PT matrix.

2.1. An approach based on homogeneous recurrence relations

By applying Laplace expansion to matrix Pi (Qi and Ri) on the first row, it yields

det(Pi) = a · det(Pi−1) − b · det(Qi−1) + c · det(Ri−1), (2.1)

det(Qi) = d · det(Pi−1) − be · det(Pi−2) + ce · det(Qi−2), (2.2)

det(Ri) = d · det(Qi−1) − ae · det(Pi−2) + ce2 · det(Pi−3). (2.3)

Together with (2.1) and (2.3), we can deduce that

det(Pi) − a · det(Pi−1) + ace · det(Pi−3) − c2e2 · det(Pi−4) + b · det(Qi−1) − cd · det(Qi−2) = 0. (2.4)

Meanwhile, it follows from (2.2) that

b · det(Qi−1) − cd · det(Qi−2) = bd · det(Pi−2) − (b2e + cd2) · det(Pi−3) + bcde · det(Pi−4)

+ ce(b · det(Qi−3) − cd · det(Qi−4)). (2.5)

Together with (2.4) and (2.5), we can obtain a seven-term homogeneous recurrence relation as follows:

det(Pi) = a · det(Pi−1) − (bd − ce) · det(Pi−2) − (2ace − b2e − cd2) · det(Pi−3)

− ce(bd − ce) · det(Pi−4) + ac2e2 · det(Pi−5) − c3e3 · det(Pi−6). (2.6)

In addition, the associated characteristic equation of (2.6) is defined by

λ6
− aλ5

+ (bd − ce)λ4
+ (2ace − b2e − cd2)λ3

+ ce(bd − ce)λ2
− ac2e2λ + c3e3 = 0. (2.7)

Theorem 2.1. Let c1, c2, . . . , ck ∈ R. Suppose the characteristic equation

λk
− c1λk−1

− · · · − ck = 0,
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