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1. Introduction

Non-convex analysis, especially ordered normed spaces, normal cones and Topical functions [1-7], has several applica-
tions in optimization theory. In these cases an order is introduced by using vector space cones. Huang and Zang [5] used this
approach, and they replaced the real numbers by ordering Banach space and defined a cone metric space. Also, they proved
some fixed point theorems of contractive mappings on this new setting.

After the definition of the concept of cone metric space in [5], fixed point theory on these spaces has been developing
(see, e.g.,[1,8-14,6,15-24,7,25-29]). Generally, this theory on cone metric space is used for contractive-type or contractive-
type mappings (see the related references [1-29]). On the other hand, fixed point theory on partially ordered sets has also
been developing recently [10,11,30-32].

In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we
prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings
on an ordered cone metric space.

We recall the definition of cone metric spaces and some of their properties [5]. Let E be a real Banach space and P be a
subset of E. By & we denote the zero element of E and by Int P the interior of P. The subset P is called a cone if and only if

(i) P is closed, nonempty and P # {6},
(ii) a,beR,a,b>0,x,y e P—ax+ by € P,
(iii) x e Pand —x € P = x = 0.

Given a cone P C E, we define a partial ordering < with respect to P by x < y if and only if y — x € P. We shall write
x < yifx <yandx # y, and we shall write x < y ify — x € Int P.

The cone P is called normal if there is a number M > 0 such that, forallx,y € E,0 < x < y implies that ||x|| < M ||y|l.

The least positive number satisfying the above is called the normal constant of P.
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The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if {x, },>1 is
a sequence such thatx; < x, < ... < yforsomey € E, then there is x € E such that lim,_, , ||x, — x|| = 0. Equivalently,
the cone P isregular if and only if every decreasing sequence which is bounded from below is convergent. It has been proved
in Lemma 1.1 in [25] that every regular cone is normal.

In the following, we always suppose that E is a Banach space, P is a cone in E with Int P # & and < is partial ordering
with respect to P.
Definition 1 (/5]). Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies

(d1) 0 < d(x,y) forallx,y € X withx # yand d(x,y) = 0 ifx =y,
(dy) d(x,y) =d(y,x) forallx,y € X,
(d3) d(x,y) <d(x,z) +d(z,y) forallx,y,z € X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
It is obvious that the cone metric spaces generalize metric spaces.

Example 1 ([5]).LetE = R?,P = {(x,y) €E | x,y > 0},X =Randd : X x X — Esuchthatd(x,y) = (|x —y|, « [x — y|),
where @ > 0 is a constant. Then (X, d) is a cone metric space.

Definition 2 (/5]). Let (X, d) be a cone metric space. Let {x,} be a sequence in X and x € X.If foreveryc € E with9 « ¢
there is N such that, for alln > N, d(x,, X) < c, then {x,} is said to be convergent and {x,} converges to x and x is the limit
of {x,}. We denote this by lim, .., x, = xorx, — xasn — oo. If for every ¢ € E with 8 « c there is N such that, for all
n,m > N, d(x,, xn) < c, then {x,} is called a Cauchy sequence in X. (X, d) is a complete cone metric space if every Cauchy
sequence is convergent.

Lemma 1 ([5]). Let (X, d) be a cone metric space, P be a normal cone and let {x,} be a sequence in X. Then

(i) {xn} converges to x if and only if d(x,,x) — 6 (n — 00),
(ii) {x,} is a Cauchy sequence if and only if d(x,, xn) — 6 (n, m — ©0).

Let (X, d) be a cone metric space, f : X — X and xy € X. Then the function f is continuous at x, if for any sequence
Xn — Xo we have fx, — fxq [6].

2. Fixed point theorems for nondecreasing mappings

We begin by proving the following lemma. We can find the metric version of it in [33].

Lemma 2. Let (X, d) be a cone metric space with the Banach space E, P be a cone in E, “ < ” be a partial ordering with respect to
P and ¢ : X — E. Define the relation “<” on X as follows:

XXy <= dxy) < ox) — o).
Then “<"is a (partial) order on X, named the partial order induced by ¢.
Proof. Forallx € X, d(x,x) = 0 = ¢(x) — ¢(x); that is, “<" is reflexive. Again, forx, y € X,letx < yandy < x. Then,
dix,y) < ¢(x) — 1)
and
d@y,x) < () — ¢ ().
This shows that d(x, y) = 6; that is, x = y. Thus “<" is antisymmetric. Now for x, y, z € X, letx < yand y < z. Then,
dix,y) < ¢(x) — o) (2.1)
and
d@y,z) < ¢) — ¢(2). (2.2)
Then, using (2.1) and (2.2) we have
d(x,z) < dx,y) +d,2)
o) — o) + o) — ¢(2)
= ¢(x) — ¢(2).
This shows thatx < z. O
Now we give some examples.

Example 2. let E = R?> P = {(x,y) € E | x,y > 0},X = {a,b,c}andd : X x X — E such that d(x,x) = (0,0)
forallx € X,d(a,b) = d(b,a) = (1,2),d(a,c) = d(c,a) = (1,3) and d(b,c) = d(c,b) = (2, 3). Then it is obvious
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