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a b s t r a c t

In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type
theorem. Furthermore,we prove fixed point theorems for single-valued nondecreasing and
weakly increasingmappings, andmulti-valuedmappings on an ordered conemetric space.
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1. Introduction

Non-convex analysis, especially ordered normed spaces, normal cones and Topical functions [1–7], has several applica-
tions in optimization theory. In these cases an order is introduced by using vector space cones. Huang and Zang [5] used this
approach, and they replaced the real numbers by ordering Banach space and defined a cone metric space. Also, they proved
some fixed point theorems of contractive mappings on this new setting.
After the definition of the concept of cone metric space in [5], fixed point theory on these spaces has been developing

(see, e.g., [1,8–14,6,15–24,7,25–29]). Generally, this theory on conemetric space is used for contractive-type or contractive-
type mappings (see the related references [1–29]). On the other hand, fixed point theory on partially ordered sets has also
been developing recently [10,11,30–32].
In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we

prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings
on an ordered cone metric space.
We recall the definition of cone metric spaces and some of their properties [5]. Let E be a real Banach space and P be a

subset of E. By θ we denote the zero element of E and by Int P the interior of P . The subset P is called a cone if and only if

(i) P is closed, nonempty and P 6= {θ},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P H⇒ ax+ by ∈ P ,
(iii) x ∈ P and−x ∈ P H⇒ x = θ .

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y − x ∈ P . We shall write
x < y if x ≤ y and x 6= y, and we shall write x� y if y− x ∈ Int P .
The cone P is called normal if there is a numberM > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y implies that ‖x‖ ≤ M ‖y‖.
The least positive number satisfying the above is called the normal constant of P .
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The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if {xn}n≥1 is
a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0. Equivalently,
the cone P is regular if and only if every decreasing sequencewhich is bounded from below is convergent. It has been proved
in Lemma 1.1 in [25] that every regular cone is normal.
In the following, we always suppose that E is a Banach space, P is a cone in E with Int P 6= ∅ and ≤ is partial ordering

with respect to P .

Definition 1 ([5]). Let X be a nonempty set. Suppose the mapping d : X × X → E satisfies
(d1) θ < d(x, y) for all x, y ∈ X with x 6= y and d(x, y) = θ if x = y,
(d2) d(x, y) = d(y, x) for all x, y ∈ X ,
(d3) d(x, y) ≤ d(x, z)+ d(z, y) for all x, y, z ∈ X .
Then d is called a cone metric on X and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1 ([5]). Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = R and d : X × X → E such that d(x, y) = (|x− y| , α |x− y|),
where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 2 ([5]). Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X . If for every c ∈ E with θ � c
there is N such that, for all n > N , d(xn, x)� c , then {xn} is said to be convergent and {xn} converges to x and x is the limit
of {xn}. We denote this by limn→∞ xn = x or xn → x as n → ∞. If for every c ∈ E with θ � c there is N such that, for all
n,m > N , d(xn, xm)� c , then {xn} is called a Cauchy sequence in X . (X, d) is a complete cone metric space if every Cauchy
sequence is convergent.

Lemma 1 ([5]). Let (X, d) be a cone metric space, P be a normal cone and let {xn} be a sequence in X. Then
(i) {xn} converges to x if and only if d(xn, x)→ θ (n→∞),
(ii) {xn} is a Cauchy sequence if and only if d(xn, xm)→ θ (n,m→∞).

Let (X, d) be a cone metric space, f : X → X and x0 ∈ X . Then the function f is continuous at x0 if for any sequence
xn → x0 we have fxn → fx0 [6].

2. Fixed point theorems for nondecreasing mappings

We begin by proving the following lemma. We can find the metric version of it in [33].

Lemma 2. Let (X, d) be a cone metric space with the Banach space E, P be a cone in E, ‘‘ ≤ ’’ be a partial ordering with respect to
P and φ : X → E. Define the relation ‘‘�’’ on X as follows:

x � y⇐⇒ d(x, y) ≤ φ(x)− φ(y).

Then ‘‘�’’ is a (partial) order on X, named the partial order induced by φ.

Proof. For all x ∈ X , d(x, x) = θ = φ(x)− φ(x); that is, ‘‘�’’ is reflexive. Again, for x, y ∈ X , let x � y and y � x. Then,

d(x, y) ≤ φ(x)− φ(y)

and

d(y, x) ≤ φ(y)− φ(x).

This shows that d(x, y) = θ ; that is, x = y. Thus ‘‘�’’ is antisymmetric. Now for x, y, z ∈ X , let x � y and y � z. Then,

d(x, y) ≤ φ(x)− φ(y) (2.1)

and

d(y, z) ≤ φ(y)− φ(z). (2.2)

Then, using (2.1) and (2.2) we have

d(x, z) ≤ d(x, y)+ d(y, z)
≤ φ(x)− φ(y)+ φ(y)− φ(z)
= φ(x)− φ(z).

This shows that x � z. �

Now we give some examples.

Example 2. Let E = R2, P = {(x, y) ∈ E | x, y ≥ 0}, X = {a, b, c} and d : X × X → E such that d(x, x) = (0, 0)
for all x ∈ X, d(a, b) = d(b, a) = (1, 2), d(a, c) = d(c, a) = (1, 3) and d(b, c) = d(c, b) = (2, 3). Then it is obvious
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