Contents lists available at ScienceDirect

Computers and Mathematics with Applications

ELSEVIER

journal homepage: www.elsevier.com/locate/camwa

Ordered cone metric spaces and fixed point results

Ishak Altun^a, Vladimir Rakočević^{b,*}

^a Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450-Yahsihan, Kirikkale, Turkey ^b Faculty of Mathematics and Sciences, University of Nis, Visegradska 33, 18000 Nis, Serbia

ARTICLE INFO

Article history: Received 1 April 2009 Received in revised form 23 April 2010 Accepted 22 May 2010

Keywords: Banach spaces Cone metric space Fixed point Partial order

ABSTRACT

In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings on an ordered cone metric space. © 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Non-convex analysis, especially ordered normed spaces, normal cones and Topical functions [1–7], has several applications in optimization theory. In these cases an order is introduced by using vector space cones. Huang and Zang [5] used this approach, and they replaced the real numbers by ordering Banach space and defined a cone metric space. Also, they proved some fixed point theorems of contractive mappings on this new setting.

After the definition of the concept of cone metric space in [5], fixed point theory on these spaces has been developing (see, e.g., [1,8–14,6,15–24,7,25–29]). Generally, this theory on cone metric space is used for contractive-type or contractive-type mappings (see the related references [1–29]). On the other hand, fixed point theory on partially ordered sets has also been developing recently [10,11,30–32].

In this paper, we introduce a partial order on a cone metric space and prove a Caristi-type theorem. Furthermore, we prove fixed point theorems for single-valued nondecreasing and weakly increasing mappings, and multi-valued mappings on an ordered cone metric space.

We recall the definition of cone metric spaces and some of their properties [5]. Let *E* be a real Banach space and *P* be a subset of *E*. By θ we denote the zero element of *E* and by Int *P* the interior of *P*. The subset *P* is called a cone if and only if

(i) *P* is closed, nonempty and $P \neq \{\theta\}$,

- (ii) $a, b \in \mathbb{R}, a, b \ge 0, x, y \in P \Longrightarrow ax + by \in P$,
- (iii) $x \in P$ and $-x \in P \implies x = \theta$.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We shall write x < y if $x \leq y$ and $x \neq y$, and we shall write $x \ll y$ if $y - x \in$ Int P.

The cone *P* is called normal if there is a number M > 0 such that, for all $x, y \in E, \theta \le x \le y$ implies that $||x|| \le M ||y||$. The least positive number satisfying the above is called the normal constant of *P*.

* Corresponding author. E-mail addresses: ishakaltun@yahoo.com (I. Altun), vrakoc@bankerinter.net (V. Rakočević).

^{0898-1221/\$ –} see front matter s 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2010.05.038

The cone *P* is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\{x_n\}_{n\geq 1}$ is a sequence such that $x_1 \le x_2 \le \cdots \le y$ for some $y \in E$, then there is $x \in E$ such that $\lim_{n\to\infty} ||x_n - x|| = 0$. Equivalently, the cone *P* is regular if and only if every decreasing sequence which is bounded from below is convergent. It has been proved in Lemma 1.1 in [25] that every regular cone is normal.

In the following, we always suppose that *E* is a Banach space, *P* is a cone in *E* with Int $P \neq \emptyset$ and \leq is partial ordering with respect to *P*.

Definition 1 ([5]). Let X be a nonempty set. Suppose the mapping $d : X \times X \to E$ satisfies

(d₁) $\theta < d(x, y)$ for all $x, y \in X$ with $x \neq y$ and $d(x, y) = \theta$ if x = y,

 $(d_2) \ d(x, y) = d(y, x) \text{ for all } x, y \in X,$

(d₃) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then *d* is called a cone metric on *X* and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1 ([5]). Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E \mid x, y \ge 0\}$, $X = \mathbb{R}$ and $d : X \times X \to E$ such that $d(x, y) = (|x - y|, \alpha |x - y|)$, where $\alpha \ge 0$ is a constant. Then (X, d) is a cone metric space.

Definition 2 ([5]). Let (X, d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $\theta \ll c$ there is N such that, for all n > N, $d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent and $\{x_n\}$ converges to x and x is the limit of $\{x_n\}$. We denote this by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$ as $n \to \infty$. If for every $c \in E$ with $\theta \ll c$ there is N such that, for all n, m > N, $d(x_n, x_m) \ll c$, then $\{x_n\}$ is called a Cauchy sequence in X. (X, d) is a complete cone metric space if every Cauchy sequence is convergent.

Lemma 1 ([5]). Let (X, d) be a cone metric space, P be a normal cone and let $\{x_n\}$ be a sequence in X. Then

(i) $\{x_n\}$ converges to x if and only if $d(x_n, x) \to \theta$ $(n \to \infty)$,

(ii) $\{x_n\}$ is a Cauchy sequence if and only if $d(x_n, x_m) \rightarrow \theta$ $(n, m \rightarrow \infty)$.

Let (X, d) be a cone metric space, $f : X \to X$ and $x_0 \in X$. Then the function f is continuous at x_0 if for any sequence $x_n \to x_0$ we have $fx_n \to fx_0$ [6].

2. Fixed point theorems for nondecreasing mappings

We begin by proving the following lemma. We can find the metric version of it in [33].

Lemma 2. Let (X, d) be a cone metric space with the Banach space E, P be a cone in $E, " \leq "$ be a partial ordering with respect to P and $\phi : X \to E$. Define the relation " \leq " on X as follows:

 $x \leq y \iff d(x, y) \leq \phi(x) - \phi(y).$

Then " \leq " is a (partial) order on X, named the partial order induced by ϕ .

Proof. For all $x \in X$, $d(x, x) = \theta = \phi(x) - \phi(x)$; that is, " \leq " is reflexive. Again, for $x, y \in X$, let $x \leq y$ and $y \leq x$. Then,

$$d(x, y) \le \phi(x) - \phi(y)$$

and

$$d(y, x) \le \phi(y) - \phi(x).$$

This shows that $d(x, y) = \theta$; that is, x = y. Thus " \leq " is antisymmetric. Now for $x, y, z \in X$, let $x \leq y$ and $y \leq z$. Then,

$$d(x,y) \le \phi(x) - \phi(y) \tag{2.1}$$

(2.2)

and

 $d(y,z) \le \phi(y) - \phi(z).$

Then, using (2.1) and (2.2) we have

$$d(x, z) \leq d(x, y) + d(y, z)$$

$$\leq \phi(x) - \phi(y) + \phi(y) - \phi(z)$$

$$= \phi(x) - \phi(z).$$

This shows that $x \leq z$. \Box

Now we give some examples.

Example 2. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E \mid x, y \ge 0\}$, $X = \{a, b, c\}$ and $d : X \times X \rightarrow E$ such that d(x, x) = (0, 0) for all $x \in X$, d(a, b) = d(b, a) = (1, 2), d(a, c) = d(c, a) = (1, 3) and d(b, c) = d(c, b) = (2, 3). Then it is obvious

Download English Version:

https://daneshyari.com/en/article/470816

Download Persian Version:

https://daneshyari.com/article/470816

Daneshyari.com