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1. Introduction

The least-squares and stochastic gradient parameter estimation methods are two classes of basic identification algo-
rithms. They have received much attention in many areas, e.g., signal processing, adaptive control and system identifi-
cation [1-9]. These two methods are used in studying different types of systems, e.g., multivariable systems [2,10-14],
dual-rate and multirate sampled-data systems [ 14-18], nonlinear block-oriented systems [ 19-22], and the performances of
these two classes of identification methods for different systems were analyzed in [18,23-26].

The recursive prediction error least-squares method can identify the parameters of Box-Jenkins systems [27], but the
stochastic gradient (SG) identification algorithm has low computational load and slow convergence rates [28]. Recently, Liu,
Wang and Ding presented a least-square-based iterative identification algorithm for Box-Jenkins models [29]. On the basis
of their work in [29], the objective of this paper is to develop new identification algorithms using the iterative techniques and
to present a gradient-based iterative identification algorithm for Box-Jenkins systems to improve the parameter estimation
accuracy.

The paper is organized as follows. Section 2 simply introduces the prediction error stochastic gradient algorithm for
Box-Jenkins models and Section 3 derives a gradient-based iterative identification algorithm for Box-Jenkins systems.
Section 4 gives an illustrative example. Finally, concluding remarks are given in Section 5.

2. The stochastic gradient algorithms

Consider the following Box-Jenkins systems in [29],

t—B(Z) ; D(z) ; 1
J’()—EU()‘F@U()» (1
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where {u(t)} and {y(t)} are the input and output sequences, respectively, {v(t)} is a white noise sequence with zero mean,
and A(z), B(z), C(z) and D(z) are the polynomials, of known orders (ng, ny, N, ng), in the unit backward shift operator z~!
[ie.,z7y(t) = y(t — 1)], defined by

AZ) =1+ aiz7 '+ @z 2+ +apz ™,
B(z) = b1z ' + bz 2+ + byz ™,

C@=14+cz ' 4z 2+ +cpz™,
D(2) = 14diz7 " +doz > + -+ + dpyz ™.

Without loss of generality, assume that u(t) = 0, y(t) = 0and v(t) = 0ast < 0,and n := ng + np + n¢ + ng.
Like in [29], define two intermediate variables,

x(t) = 2@ o )
AR T
. D(z)

w(t) = C(Z)v(t). (3)

Define the parameter vectors,

0 — [zs] € RMatm+nc+ng

n
05 ;= [a1,a, ..., Qny, b1, by, ..., by, 1" € RMH™,
0 ==1[c1,Cos ..., Cre, d1, doy .o, dy, ] € RY T,

and the information vectors,

o(t) = [‘ps(t)] € R"a+mtnctng

@n(t)
@ (t) = [—x(t — 1), —x(t —2), ..., —x(t — ng), u(t — 1), u(t —2),...,u(t —ny)]" € Ra+™,
@, (t) = [—w(t — 1), —w(t —2),..., —w(t —n),v(t — 1), vt —2),...,v(t —ng)]" € R,

where subscripts Roman s and n denote the first letters of the words ‘system’ and ‘noise’, respectively. Egs. (1)-(3) can be
written as

x(t) = @; ()b, (4)
w(t) = @f ()0, + v(t), (5)
() = x(t) + w(t) (6)

=@ ()0 + v(b). (7)

In order to show the advantages of the iterative identification methods proposed in the next section, the following is
simply to discuss the comparable pseudo-linear regression or prediction error identification approaches [27].
Since x(t —i), w(t —i) and v(t —1i) in the information vector ¢(t) are unknown, so the stochastic gradient algorithm [28]:

B(6) = Bt — 1)+ %[v(t) — T — 1), (8)
HO =1t -1+ loOI% 1) =1 ©)

cannot generate the estimate 9(t) of the parameter vector € in (7). The solution is to use the prediction error method or
so-called Bootstrap method [27]: replacing the unknown variables x(t — i), w(t —i) and v(t — i) in ¢(t) with their estimates
x(t — i), w(t — i) and D(t — i), respectively, and ¢(t) in (8)-(9) with @(t) leads to the following generalized extended
stochastic gradient algorithm for the Box-Jenkins systems (the BJ-GESG algorithm for short):

B(6) = bt — 1) + %[v(t) ~ T — D)1, (10)
ry=rt—1D+ 9O  rO) =1, (11)
X6, W UX(3)

() = [—R(t — 1), =&(t — 2), ..., =R(t — ng), u(t — 1), u(t —2),...,u(t —np]", (13)
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