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a b s t r a c t

In recent contributions, algebraic multigrid methods have been designed and studied from
the viewpoint of spectral complementarity. In this note, we focus our efforts on specific
applications and, more precisely, on large linear systems arising from the approximation
of the weighted Laplacian with various boundary conditions. We adapt the multigrid
idea to this specific setting and we present and critically discuss a wide set of numerical
experiments showing the potentiality of the considered approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this note, we test a specific application of a previously proposed algebraic multigrid procedure [1]. In that work, we
posed and partially answered the following question: having at our disposal an optimal multigrid procedure for Anx = b,
with{An} being a given sequence of Hermitian positive definite matrices of increasing dimension, what are the minimal
changes (if any) to the procedure for maintaining the optimality for Bny = c , {Bn} being a new sequence of matrices, with
Bn = An + Rn?
Of course if there is no relation between {An} and {Bn} nothing can be said. However, under the mild assumption that

there exists a value ϑ > 0 independent of n such that An ≤ ϑBn for n ≥ n̄ and Bn ≤ MIn for n ≥ n̄withM again independent
of n, it has been shown that the smoothers can be easily adapted and the prolongation and restriction operators can be
substantially kept unchanged. Here, the notation X ≤ Y , with X and Y Hermitianmatrices, means that Y−X is non-negative
definite.
The aim of this paper is to show the effectiveness of this approach in a specific setting. More precisely, we consider linear

systems An(a)u = b arising from finite difference (FD) approximations of

−∇(a(x)∇u(x)) = f (x), x ∈ Ω = (0, 1)d, d ≥ 1,

where a(x) ≥ a0 > 0, f (x) are given bounded functions and with Dirichlet boundary conditions (BCs). Some remarks about
the case of periodic or reflective BCs are also considered (for a discussion on this topic see [2,3]).
We recall that when a(x) ≡ 1, the matrix An(1) is structured, positive definite, and ill-conditioned, and an optimal

algebraic multigrid method is already available (see [4–14]) according to different BCs.
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Hereafter, owing to the spectral equivalence between the matrix sequences {An(a)} and {An(1)}, the key idea is that
the multigrid procedure just devised for {An(1)} can be successfully applied to {An(a)} too. Here, {Xn} and {Yn} are said to
be spectrally equivalent if all Xn and Yn are Hermitian and there exist constants m,M > 0, independent of n, such that
mXn ≤ Yn ≤ MXn for each n > 0.
More generally, in [1], we treated the case of structured-plus-banded uniformly bounded Hermitian positive definite

linear systems, where the banded part Rn which is added to the structured coefficient matrix An is not necessarily definite
and not necessarily structured. Now, in our setting, An = An(1) is the structured part (e.g., Toeplitz, circulant, etc., according
to the BCs) and Rn = An(a− 1) is the non-structured, not necessarily definite contribution.
However, while a theoretical analysis of the two-grid method (TGM) for structured-plus-banded uniformly bounded

Hermitian positive definite linear systems has been given in [1], in terms of the algebraic multigrid theory due to Ruge and
Stüben [15], the corresponding analysis for the multigrid method (MGM) is not complete and deserves further attention.
Here, for the MGM algorithm, we mean the simplest (and less expensive) version of the large family of multigrid methods,
i.e., the V-cycle procedure: for a brief description of the TGM and of the V-cycle algorithms we refer to Section 2, while an
extensive treatment can be found in [16], and especially in [17].
Indeed, the numerics in this note suggest that theMGM is optimal in the sense that (see [18]) the cost of solving the linear

system (inverse problem) is proportional, by a pure constant not depending on n, to the cost of the matrix–vector product
(direct problem). In our case, more details can be given, and in fact

a. the observed number of iterations is bounded by a constant that is independent of the size of the algebraic problem;
b. the cost per iteration (in terms of arithmetic operations) is just linear with respect to the size of the algebraic
problem.

Furthermore, given the spectral equivalence between {An(a)}, a(x) ≥ a0 > 0, and {An(1)}, a simpler numerical strategy
could be used: use An(1) as the preconditioner for An(a) in a preconditioned conjugate gradient (PCG)method and solve the
linear systems with coefficient matrix An(1) by the MGM. Of course, this approach, which has been proposed, theoretically
studied, and numerically validated in [19,12], is simpler to implement. However, several linear systems have to be solved
by the MGM (one MGM application for every PCG step), while the design of an ad hoc MGM procedure implies the use
on a single MGM application. There, when the coefficient a shows large jumps and is (close to) degenerate, the number of
PCG iterations can become large, and consequently the flop count can be more favorable in applying a single MGM directly,
instead of using it as solver for the preconditioner.
The paper is organized as follows. In Section 2 we report the standard TGM and MGM algorithms, together with the

reference theoretical results on the TGM optimal rate of convergence, under some general and weak assumptions. In
Section 3, the proposed approach is applied to the discrete weighted Laplacian and several numerical experiments are
considered, by varying the diffusion coefficient a(x) with respect to its analytical features. Finally, Section 4 deals with
further considerations concerning future work and perspectives.

2. Two-grid and multigrid method

Wecarefully report the TGMandMGMalgorithms andwedescribe the theoretical ground onwhichwebase our proposal.
We startwith the simpler TGMalgorithm and thenwe describe theMGMalgorithm; its interpretation as stationary ormulti-
iterative method is also considered; see [20].

2.1. Algorithm definition

Let n0 be a positive d-index, d ≥ 1, and let N(·) be an increasing function with respect to n0. In devising a TGM, and an
MGM, for the linear system An0xn0 = bn0 , where An0 ∈ CN(n0)×N(n0) and xn0 , bn0 ∈ CN(n0), the ingredients below must be
considered.
Let n1 < n0 (componentwise) and let p

n1
n0 ∈ CN(n0)×N(n1) be a given full-rank matrix. In order to simplify the notation, in

the followingwewill refer to anymulti-index ns bymeans of its subscript s, so that, for example, As := Ans , bs := bns , p
s+1
s :=

pns+1ns , etc.
With the same notations, a class of stationary iterative methods of the form x(j+1)s = Vsx

(j)
s + b̃s is also considered in

such a way that Smooth(x(j)s , bs, Vs, νs) denotes the application of this rule νs times, with νs a positive integer number, at the
dimension corresponding to the index s.
Thus, the solution of the linear system A0x0 = b0 is obtained by applying repeatedly the TGM iteration, where the jth

iteration

x(j+1)0 = T GM(x(j)0 , b0, A0, V0,pre, ν0,pre, V0,post, ν0,post)
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