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a b s t r a c t

In this paper we consider a von Karman equation of memory type

utt +∆2u −

 t

0
g(t − s)∆2u(s)ds = [u, F(u)]

with clamped boundary condition.We establish a decay result of solutions without impos-
ing the usual relation between a kernel function g and its derivative. This result generalizes
earlier ones to an arbitrary rate of decay, which is not necessarily of an exponential or poly-
nomial decay.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the following von Karman system of memory type

utt +∆2u −

 t

0
g(t − s)∆2u(s)ds = [u, F(u)] inΩ × R+, (1.1)

∆2F(u) = −[u, u] inΩ × R+, (1.2)

u =
∂u
∂ν

= 0, F(u) =
∂F(u)
∂ν

= 0 on ∂Ω × R+, (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω, (1.4)

whereΩ ⊂ R2 is a bounded domain with sufficiently smooth boundary ∂Ω , ν = (ν1, ν2) is the outward unit normal vector
to ∂Ω, x = (x1, x2) ∈ Ω , g is a kernel function which will be specified later and von Karman bracket is given by

[u, φ] ≡ ux1x1φx2x2 + ux2x2φx1x1 − 2ux1x2φx1x2 .

From the physical point of view, problem (1.1)–(1.4) describes vertical oscillations of nonlinear plates subjects to large
displacements. It is essential to note that this problem does not account for regularizing effects of rotational inertia −1utt
which make the nonlinear term subcritical (see [1] for the discussion). A class of von Karman equations with dissipative
effects has been studied by many authors [2–13]. As regards von Karman equation of the form

utt +∆2u + g(x, ut) = [u, F(u)], (1.5)
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it was discussed about the results on existence and asymptotic behavior (see e.g. [1,3–5,10] and references therein). When
g = 0 in (1.5), Favini et al. [3] proved global existence, uniqueness and regularity of solutions for the equationwith nonlinear
boundary dissipation, moreover they showed the uniqueness of weak solutions by proving sharp regularity results of the
Airy stress function, Park and Park [10] considered the existence of strong solutions and uniform decay rates for the equation
with boundarymemory condition. For the case g ≠ 0 in (1.5), Horn and Lasiecka [4] investigated energy decay rates of weak
solutions for the equation with g(x, ut) = b(x)ut and nonlinear boundary dissipation.

With respect to a von Karman equation with rotational inertia and memory of the form

utt +∆2u − h1utt −

 t

0
g(t − s)∆2u(s)ds = [u, F(u)], (1.6)

several authors [8,11,13] investigated existence and stability of solutions.Munoz Rivera andMenzala [8] proved exponential
and polynomial decay rates under the classical condition g ′(t) ≤ −ζg(t) and g ′(t) ≤ −cg1+ 1

p (t), p > 2, respectively. For
the problem related to these conditions, we refer [14]. Later, Park et al. [11] and Raposo and Santos [13] extended those
results by proving general decay rates of the energy under the more general condition g ′(t) ≤ −ζ (t)g(t), where ζ (t) is a
nonincreasing and positive function (see [15–18,11] and references therein for the related problems). Though the presence
of rotational inertia −1utt is quite legitimate from the physical point of view, it gives the amount of regularity necessary to
compute via a suitable Liapunov functional. Recently, Cavalcanti et al. [19] considered problem (1.6) with h = 0 under the
condition g ′(t) ≤ −H(g(t)),whereH(s) is a given continuous, positive, increasing and convex function such thatH(0) = 0.
The feature of thework [19] is to providewellposedness of bothweak and regular solutions, and sharp and general decay rate
estimates without accounting for regularizing effects of rotational inertia by pursuing the strategy introduced in [20–22].

On the other hand, Fabrizio and Polidoro [23] obtained exponential decay rates of solutions to a linear viscoelastic wave
equation under the condition g ′(t) ≤ 0 and eαtg(t) ∈ L1(0,∞) for some α > 0. Tatar [24] weakened this assumption as

g ′(t) ≤ 0 and ζ (t)g(t) ∈ L1(0,∞), (1.7)

where ζ (t) is a nonnegative function, and established an arbitrary decay rate for a linear viscoelastic wave equation by
introducing an appropriate new functional in the modified energy.

Inspired by these results, we improve earlier ones concerning exponential and polynomial decay rates for problem (1.1)–
(1.4) by applying the condition (1.7). Since problem (1.1)–(1.4) is a nonlinear viscoelastic system, the estimates are more
complicate. But we get the desired result by imposing some restriction on the initial data.

The remainder of the paper is organized as follows. In Section 2, we give some preliminaries related to problem (1.1)–
(1.4). In Section 3, we prove an arbitrary decay result.

2. Preliminaries

In this section we review some notations about function spaces and preliminary results. We denote (u, v) =
Ω
u(x)v(x)dx. For a Hilbert space X , we denote (·, ·)X and ∥·∥X the inner product and norm of X , respectively. For simplicity,

we denote ∥ · ∥L2(Ω) by ∥ · ∥. Let λ0 and λ be the smallest positive constants such that

λ0∥u∥2
≤ ∥∇u∥2 and λ∥u∥2

≤ ∥1u∥2 for u ∈ H2
0 (Ω). (2.1)

Now we introduce relative results of the Airy stress function and von Karman bracket (see e.g. [2,1,3,4,7]).

Lemma 2.1. If u, φ and ψ belong in H2(Ω) and at least one of them belongs in H2
0 (Ω), then ([u, φ], ψ) = ([u, ψ], φ).

Lemma 2.2. If u ∈ H2(Ω), then ∥F(u)∥W2,∞(Ω) ≤ c∥u∥2
H2(Ω)

.

Lemma 2.3. If u ∈ H2(Ω) and φ ∈ W 2,∞(Ω), then ∥[u, φ]∥ ≤ c∥u∥H2(Ω)∥φ∥W2,∞(Ω).

As in [24], we impose the following conditions on the relaxation function g:

(G1) g : R+
→ R+ is a continuous, nonincreasing and almost everywhere differentiable function satisfying

g(0) > 0,


∞

0
g(s)ds := l < 1. (2.2)

(G2) There exists an increasing function ζ (t) > 0 such that

ζ ′(t)
ζ (t)

:= η(t) is a nonincreasing function and


∞

0
g(s)ζ (s)ds < ∞. (2.3)

We recall the existence results (see [19]):
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