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a b s t r a c t

In this work we present an efficient and accurate implementation of the LRDRM. This inte-
gral domain decompositionmethod exploits two advantages: first, it imposes the boundary
conditions at the Local RBF interpolation. Second, the integrals to compute are always reg-
ular. The approximation of the derivative of the field variable is computed in a posteriori
way, directly differentiating the Local RBF interpolation or the local integral equation. The
efficient and accurate behaviour of thismethod are demonstrated by performing numerical
examples,with special emphasis on a 1Dbenchmark convective-diffusion equation. Results
for 2D convection–diffusion, 2D Helmholtz and 2D Poisson equations are also presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is now a well-established numerical technique in engineering. The basis of this
method is to transform the original partial differential equation (PDE), or system of PDEs that define a given physical
problem, into an equivalent integral equation (or system) by means of the corresponding Green’s second identity and its
fundamental solution, i.e. Green’s integral representation formula. In this way some or all of the field variables and their
derivatives are only necessary to be defined at the boundary.

Further increase in the number of applications of the BEM has been hampered by the need to operate with relatively
complex fundamental solutions or by the difficulties encountered when these solutions cannot be expressed in a closed
form. In the BEM formulation of this kind of problems, it is common to use an integral representation formula based upon a
PDEwith known closed-form fundamental solution, and express the remaining terms of the original equation as domain in-
tegrals. It is known that in these cases the BEM is in disadvantage in comparison with the classical domain schemes, such as
the Control Volume (CV) and the Finite Element method (FEM). In the early BEM analysis the evaluation of domain integrals
was done using cell integration, a technique which, while effective and general, made the approach too costly computation-
ally due to the successive integration at each cell required for each of the surface collocation points. Although good results
can be obtained using the cell integration technique, this approach for certain applications is several orders of magnitude
more time consuming than classical domain methods. This computational cost mainly depends on the fact that the solu-
tion at each surface or internal point must involve the evaluation of the corresponding surface integrals over the problem
boundaries.
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Several methods have been developed in the literature to take domain integrals to the boundary in order to eliminate the
need for internal cells (boundary-only BEM formulations). One of the most popular methods to date is the dual reciprocity
method (DRM) introduced by Nardini and Brebbia [1]. In the DRM, the unknown densities of the corresponding domain
integrals are interpolated by a Radial Basis Function (RBF) scheme, and by applying Green’s second identity to a convolution
integral of a particular solution and the fundamental solution, the domain integrals are converted into equivalent surface
integrals. However, the DRM approach has the same computational limitations than the cell integration scheme, since very
large fully populated matrix systems are obtained. It is important to mention that the DRM approximation is an alternative
approach to evaluate domain integrals by defining global domain interpolations and only evaluating surface integrals, but
still a domain integration scheme.

When dealing with the BEM for large problems, with or without closed form fundamental solution, it is frequently used
a domain decomposition technique, in which the original domain is divided into subdomains, and on each of them the full
integral representation formulae are applied. At the interfaces of the adjacent subdomains the corresponding full-matching
conditions are imposed (local matrix assembly), as is required in the CV and FEMmethods, for which it is necessary to define
subdomains or elements connectivity. However, in contrast with the CV and FEM methods, which integral representations
of the original PDE are based on weighted residual approximation, in the BEM technique Green’s integral representation
formula is an exact representation of the original PDE at each integration subdomain.

While the BEM matrices, which arise in the single domain formulation, are fully populated, the subdomain formulation
leads to block banded matrix systems with one block for each subregion and overlaps between blocks when subdomains
have a common interface. In the limit of a very large number of subdomains, the resulting internal mesh pattern looks like
a finite element grid. The implementation of the subdomain BEM formulation in this limiting case, i.e. a very large number
of subdomains, including cells integration at each subdomain has been called by Taigbenu and collaborators as the Green
element method (GEM) (see [2]). A similar approach based on large number of subdomains but using the DRM to evaluate
the domain integrals at each subdomain, instead of cell integration, has been referred by Popov and Power [3] as the Dual
Reciprocity Multi Domain approach (DRM-MD), for more details see Portapila and Power [4]. As previously commented, the
most attractive aspect of this type of local BEM approach at the subdomain level is the use of an exact integral representation
formula of the original PDE instead of a weighted residual approximation. However, the numerical efficiency of this type of
local BEM approaches is still behind of those classical domain numerical schemes. For this reason in recent years significant
efforts have been given to the improvement of this type of local BEM approaches.

As has been the case in the FEM, see Atluri and Zhu [5], meshless formulations of local BEM approaches, see Zhu et al., [6],
are attractive and efficient techniques to improve the performance of local BEM schemes. As in the meshless FEM, in the
meshless BEM the integral representation formulae are applied at local internal integration subdomains (or Green’s ele-
ments) embedded into interpolation stencils that are heavily overlapped. In this type of approach the continuity of the field
variables is satisfied by the interpolation functions avoiding the local connectivity between subdomains or elements needed
to enforce the matching conditions between them. Different interpolation schemes can be employed at the interpolation
stencils, being the moving least squares shape functions and RBF interpolations the most popular approaches used in the
literature. A major advantage of the meshless local BEM formulations in comparison with the classical BEM multi domain
decomposition approaches, as the GEM and the DRM-MD, is that the resulting integrands of the integral representation for-
mulae are all regular, instead of singular, since the collocation points are always selected inside the integration subdomain.
The Localized Regular Dual Reciprocity Method considered in this work is one of those meshless local Boundary Integral
Equation approaches, where RBFs are used as interpolation functions at the local stencils.

In recent years, the theory of radial basis functions (RBFs) has undergone intensive research and enjoyed considerable
success as a technique for interpolating multivariable data and functions. The idea of introducing RBF interpolation to
improve the accuracy of a classical numerical scheme has been employed by Wright and Fornberg [7]. In this work they
generalized compact Finite Difference (FD) formulas for scattered nodes and RBFs, achieving the goal of keeping the number
of stencil nodes small without a similar reduction in accuracy. They analyse the accuracy of these new compact RBF-FD
formulas by applying them to model problems involving the Laplace linear differential operator and they study the effects
of the shape parameter that arises in the infinitely smooth RBFs, multiquadric and Gaussian functions.

In [8] a modified Control Volume (CV) method which uses a RBF interpolation to improve the prediction of the flux
accuracy at the faces of the CV is presented. This method is also more flexible than the classical CV formulations because the
boundary conditions are explicitly imposed in the interpolation formula,without the need for artificial schemes (e.g. utilizing
dummy cells).

In the Local Boundary Integral Element Methods (LBEM or LBIEM) the solution domain is covered by a series of small and
heavily overlapping local interpolation stencils, where a direct interpolation of the field variables is used to approximate the
densities of the integral operator, and the boundary conditions of the problem are imposed at the integral representation
formula; i.e. at the global system of equations, resulting in the evaluation of the corresponding weakly and singular surface
integrals and if it is the case regular domain integrals, over each of the integration subdomains including those in contact
with the problem boundary [9,6,10–13]. In this type of approach, the domains of integration usually are defined over several
stencils, resulting in highly overlapping integration subdomains, in addition to the overlapping of interpolation stencils. Both
polynomial moving least squares (MLS) approximation and direct RBF interpolations have been previously used in the LBEM
as local interpolation algorithms.
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