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establish some results for multi-valued mappings that satisfy a generalized contractive
condition in a way that it contains Mizoguchi’s result as one of its special cases. In addition,
our results not only improve the results of Kiran and Kamran [Q. Kiran, T. Kamran, Nadler’s
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1. Introduction and preliminaries

Let (X, d) be a metric space. Forx € X and A C X, d(x, A) = inf{d(x,y) : y € A}. We denote by N(X) the class of all
nonempty subsets of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X) the class of all nonempty bounded
closed subsets of X and by K (X) the class of all nonempty compact subsets of X. Let H be the generalized Hausdorff metric
on CB(X) generated by the metric d, that is,

H(A, B) = max {sup d(x, B), supd(y, A)}

xeA yeB
for every A, B € CB(X). A point p € X is said to be a fixed point of T : X — CL(X) ifp € Tp.If, for x, € X, there
exists a sequence {x,} in X such that x, € Tx,_q then O(T, x9) = {xo, X1, X2, ...} is said to be orbit of T : X — CL(X).
A mapping f : X — R is said to be T-orbitally lower semi-continuous if {x,} is a sequence in O(T, xo) and x, — &
implies f(£) < lim,inff(x,). Throughout this paper J denotes an interval on R containing 0, that is an interval of the
form [0, A, [0, A) or [0, c0) and S, (t) denotes the polynomial S, (t) = 14t + - -- 4 t"~!. We use the abbreviation ¢" for
the nth iterate of a function ¢ : ] — J.

Definition 1.1 ([1]). Letr > 1. A function ¢ : ] — ] is said to be a gauge function of order r on J if it satisfies the following
conditions:

(i) p(At) < A'e(t) forallA € (0,1)and t € ];
(ii) p(t) < tforallt € ] — {0}.
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It is easy to see that the first condition of Definition 1.1 is equivalent to the following: ¢(0) = 0and ¢(t)/t" is nondecreasing
onJ — {0}. We are stating the following results for convenience.

Lemma 1.2 ([2]). Let A, B € CB(X) and let a € A. If € > 0, then there exists b € B such that d(a, b) < H(A, B) + €.

Lemma 1.3 ([1]). Let ¢ be a gauge function of order r > 1on]. If ¢ is a nonnegative and nondecreasing function on J satisfying

p(t) =top(t) forallt €], (1
then it has the following two properties:

(i) 0<¢(t) < 1forallt €];
(ii) p(At) < A71p(t) forall A € (0, 1) and t €.

Lemma 1.4 ([1]). Let ¢ be a gauge function of order r > 1 onJ. Then for every n > 0 we have
(i) @"(t) < t¢(t)5"(”n forallt €],
(i) ¢(@" (1)) < @(O)" forallt €],

where ¢ is a nonnegative and nondecreasing function on J satisfying (1).

Definition 1.5 (/1]). A nondecreasing function ¢ : ] — J is said to be a Bianchini-Grandolfi gauge function [3] on ] if

o(t) =Y ¢"(t) < oo, forallte]. (2)

n=0

Note that Ptak [4] called a function ¢ : ] — ] satisfying (2) a rate of convergence on J and noticed that ¢ satisfies the
following functional equation

o(t) =o(p() +t. (3)

The following statement is an immediate consequence of the first part of Lemma 1.4 and the obvious inequality S, (r) > n
forallr > 1.

Lemma 1.6 ([1]). Every gauge function of order r > 1 on] is a Bianchini-Grandolfi gauge function on J.

Definition 1.7 (/5]). Suppose (x;) is a sequence that converges to &. If positive constants A and « exist with

d(*nt1,§)
im ——— =
oo (d(xy, §))”
then (x,) is said to converge to £ of order «, with asymptotic error constant A.

Remark 1.8. In general, a sequence with high order of convergence converges more rapidly than a sequence with a lower
order. If « = 1, the method is called linear. If « = 2, the method is called quadratic.
In [6], Reich proved that a mapping T : X — K(X) has a fixed point in X if it satisfies

H(Tx, Ty) < k(d(x, y))d(x, y) (4)
for allx,y € X with x # y, where k : (0, 00) — [0, 1) satisfies limsup,_,,+ k(s) < 1 for every t € (0, co). This result
generalizes the fixed point theorem for single-valued mappings that was proved by Boyd and Wong [7]. Reich questioned
in [8,9] that whether or not the range of T, K(X) can be replaced by CB(X). Mizoguchi and Takahashi [10], Daffer and
Kaneko [11] and Tong-Huei Chang [ 12] gave a positive answer to the conjecture of Reich. Recently, Pathak and Shahzad [13]
generalized Nadler’s contraction principle in contrast to Reich’s and Mizoguchi-Takahashi’s theorems. More recently, Thagfi
and Shahzad [ 14] obtained some fixed point theorems for an operator which is closely related to the Reich type contraction.
The authors in [15] extended some results of Proinov [1] to the case of multi-valued maps from a complete metric space
X into the space of all nonempty proximinal closed subsets of X. The purpose of this paper is to obtain some fixed point
theorems for multi-valued maps which not only provide the iterative scheme with a high convergence rate but also the error
bounds. Our results generalize [ 10, Theorem 5], [11, Theorem 2.1], [ 15, Theorems 2.11 & 2.15] and [ 16, Theorems 2.1 & 2.2].

2. Main results

Theorem 2.1. Let (X, d) be a complete metric space, D be a closed subset of X, ¢ is a Bianchini-Grandolfi gauge function on an
interval ] and T be a mapping from D into CB(X) such that Tx N D # ¢ and

H(TxND,TyND) < ¢(d(x,y)) (5)

forallx € D,y € Tx N D with d(x,y) € J. Moreover, the strict inequality holds when d(x,y) # 0. Suppose xo € D is such that
d(xo, z) € ] for some z € Txy N D. Then:

(i) there exists an orbit {x,} of T in D and & € D such that lim, x, = &;

(ii) & is a fixed point of T if and only if the function f (x) := d(x, Tx N D) is T-orbitally lower semi-continuous at &.
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