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a b s t r a c t

In this paper,we study global bifurcation phenomena for the following Kirchhoff type prob-
lem −M


Ω

|∇u(x)|2 dx


∆u = λf (x, u) in Ω,

u = 0 on ∂Ω,

where M is a continuous function. Under some natural hypotheses, we show that
(λ1(a)M(0), 0) is a bifurcation point and there is a global continuum C emanating from
(λ1(a)M(0), 0), where λ1(a) denotes the first eigenvalue of the above problem with
f (x, s) = a(x)s. As an application of the above result, we study the existence of positive
solution for this problem with asymptotically linear nonlinearity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following Kirchhoff type problem−M


Ω

|∇u(x)|2 dx


1u = λa(x)u(x) + g(x, u, λ) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω , M is a continuous function on R+, a ∈ L∞(Ω) with
a ≢ 0, λ > 0 is a parameter, g : Ω × R2

→ R satisfies the carathéodory condition in the first two variables and

lim
s→0

g(x, s, λ)

s
= 0 (1.2)

uniformly for a.e. x ∈ Ω and λ on bounded sets. Moreover, we also assume that g satisfies the growth restriction
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(G) There exist c > 0 and p ∈ (1, 2∗) such that

|g(x, s, λ)| ≤ c

1 + |s|p−1

for a.e. x ∈ Ω and λ on bounded sets, where

2∗
=


2N

N − 2
, if N > 2,

+∞, if N ≤ 2.

The problem (1.1) is nonlocal as the appearance of the term


Ω
|∇u(x)|2 dxwhich implies that it is not a pointwise iden-

tity. This causes some mathematical difficulties which make the study of problem (1.1) particularly interesting. Moreover,
problem (1.1) is related to the stationary problem of a model introduced by Kirchhoff in 1883 to describe the transversal
oscillations of a stretched string [1]. After the famous paper by Lions [2], this type of problems has been the subject of nu-
merous studies, and some important and interesting results have been obtained, for example, see [3–6]. Recently, there are
many mathematicians studying this kind of problems by variational method, see [7–13] and the references therein. We re-
fer to [14–20] for Kirchhoff models with critical exponents. For evolution problems, we refer to [21–23] and the references
therein.

To the best of our knowledge, there are few papers that studied Kirchhoff type problems using the bifurcation theory, see
for example [24,25]. The first aim of this paper is to study global bifurcation phenomena for problem (1.1). Let λ1(a) denote
the first eigenvalue of the following problem

−1u = λa(x)u in Ω,
u = 0 on ∂Ω.

(1.3)

It is well known that λ1(a) is simple, isolated and is the unique principle eigenvalue of problem (1.3). Now, we make the
following assumptions onM .

(M0) M is a continuous function on R+ such that for some m0 > 0, we have

M(t) ≥ m0, for all t ∈ R+
;

(M1) there existsm1 > 0, such that limt→+∞ M(t) = m1.

The hypothesis (M0) shows that our problem is non-degenerate. In [14,16] the so-called ‘‘degenerate’’ case is covered (see
also [22,23,20]), that is the main Kirchhoff non-negative functionM could be zero at 0.

Our first main result is the following theorem.

Theorem 1.1. Assume that (1.2), (G) and (M0) hold. Then (λ1(a)M(0), 0) is a bifurcation point of problem (1.1) and the
associated bifurcation continuum C in R × H1

0 (Ω), whose closure contains (λ1(a)M(0), 0), is either unbounded or contains
a pair (µM(0), 0), where µ is another eigenvalue of problem (1.3).

On the basis of Theorem1.1, the second aim of this paper is to determine the interval of λ, forwhich there exists a positive
solution for the following Kirchhoff type problem−M


Ω

|∇u(x)|2 dx


1u = λf (x, u) in Ω,

u = 0 on ∂Ω,

(1.4)

where f ∈ C

Ω × R


satisfies that

(f1) f : Ω × R+
→ R+ such that f (x, s)s > 0 for x ∈ Ω and any s > 0;

(f2) lims→0+
f (x,s)

s = a(x), lims→+∞
f (x,s)

s = c(x) ≢ 0 uniformly in x ∈ Ω , where a(x), c(x) such that they are strict positive
on some subset of positive measure in Ω and λ1(c)m1 ≠ λ1(a)M(0).

The following theorem is our second main result.

Theorem 1.2. Suppose that (M0) –(M1) and (f1) –(f2) hold, then for

λ ∈ (min {λ1(c)m1, λ1(a)M(0)} , max {λ1(c)m1, λ1(a)M(0)}) ,

problem (1.4) possesses at least one positive solution.

Remark 1.3. Note that the corresponding existence result of [7] is a corollary of Theorem 1.2. In fact, by the monotonicity
of eigenvalue with respect to weight, we get 1 ∈ (λ1(a)M(0), λ1(c)m1) under the assumptions of Theorem 1 in [7]. So
problem (1.4) with λ = 1 possesses at least one positive solution. Clearly, our assumptions are weaker than corresponding
ones of [7]. Therefore, we improve and extend the corresponding result of [7].

The rest of this paper is organized as follows. Sections 2 and 3 present the proofs of Theorems 1.1 and 1.2, respectively.
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