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a b s t r a c t

This paper studies the convergence of the stochastic gradient identification algorithm of
multi-input multi-output ARX-like systems (i.e., multivariable ARX-like systems) by using
the stochastic martingale theory. This ARX-likemodel contains a characteristic polynomial
and differs from the conventional multivariable ARX system. The results indicate that the
parameter estimation errors converge to zero under the persistent excitation conditions.
The simulation results validate the proposed convergence theorem.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Parameter estimation is the key for building models. It has been widely discussed in many areas such as system
identification [1–3], signal processing [4], probability distribution [5], economic activities [6,7]. Many estimation methods
have been developed for various systems, e.g., the subspace identification methods for state–space models [8,9] and the
particle filter algorithm for the discrete-time Heston models [7]. This paper considers the multivariable systems described
by the following discrete-time state–space model [10,11]:{

x(t + 1) = Ax(t)+ Bu(t),
y(t) = Cx(t)+ Du(t), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr the system input vector and y(t) ∈ Rm the system output vector, A ∈ Rn×n,
B ∈ Rn×r , C ∈ Rm×n and D ∈ Rm×r are constant matrices.
Although the subspace identification methods can be used to estimate the parameter matrices in (1), the computational

complexity increases with the increase of the sizes of the singular value decomposition (SVD) matrices and QR factorization
constructed by the input data and output data [10,11]. Recently, Ding and Chen proposed a hierarchical identification
algorithm to simultaneously estimate the unknown parameters and states of the lifted state–spacemodels for general dual-
rate multivariable systems [12], but the convergence of their algorithm is still an open problem.
The difference equation model or the transfer matrix representation with the input–output relationship of the

multivariable systems is more useful in practice and simpler than the state–space models [13]. In this literature, Ding and
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Chen presented a hierarchical stochastic gradient algorithm and a hierarchical least squares algorithm for the input–output
representation of multivariable systems [10,11]. Han and Ding presented a multi-innovation stochastic gradient algorithm
for multi-input multi-output systems [14,15] and studied the identification problems for multirate multi-input systems
using the multi-innovation identification theory [16–19].
This paper presents a stochastic gradient algorithm and studies its convergence for multivariable systems with the

input–output representation. The proposed algorithm has less computational burden than the least squares algorithm
[10,11,20] and is easier to implement.
The structure of this paper is as follows. Section 2 derives the input–output representation and the stochastic algorithm.

Section 3 studies the convergence properties by using the martingale convergence theorem. Section 4 provides two
illustrative examples for the results in this paper. Finally, we offer some concluding remarks in Section 5.

2. The input–output representation and basic algorithm

Let us introduce some notations first. The symbol Im is an m × m identity matrix; the norm of the matrix X is defined
by ‖X‖2 := tr[XXT]; λmax[X] and λmin[X] represent the maximum and minimum eigenvalues of the square matrix X ,
respectively; ⊗ denotes the Kronecker product or direct product: if A = [aij] ∈ Rm×n, B = [bij] ∈ Rp×q, then A ⊗ B =
[aijB] ∈ Rmp×nq; col[X] denotes the vector formed by the column of the matrix X , that is, if X = [x1, x2, . . . , xn] ∈ Rm×n,
then col[X] = [xT1, x

T
2, . . . , x

T
n]
T
∈ Rmn.

Let I represent an identitymatrix of appropriate sizes. By introducing a unit backward shift operator: z−1x(t) = x(t−1),
the input–output relationship of the multivariable system in (1) can be represented as

y(t) = [C(zI − A)−1B+ D]u(t)

=

(
z−nCadj[zI − A]B
z−n det[zI − A]

+ D
)
u(t)

=:
Q (z)
α(z)

u(t)

or

α(z)y(t) = Q (z)u(t), (2)

where α(z) is the characteristic polynomial in z−1 of the system (of degree n), Q (z) is the polynomial matrix in z−1, and
they can be expressed as

α(z) := z−n det[zI − A]
= 1+ α1z−1 + α2z−2 + · · · + αnz−n, αi ∈ R1,

Q (z) := z−nCadj[zI − A]B+ z−n det[zI − A]D
= Q0 + Q1z−1 + Q2z−2 + · · · + Qnz−n, Qi ∈ Rm×r .

Taking into account disturbances in physical systems and introducing a noise vector v(t) ∈ Rm based on (2), we get a
multivariable ARX-like model:

α(z)y(t) = Q (z)u(t)+ v(t). (3)

This multivariable ARX-like system in (3) differs from the multivariable CAR/ARX system in [21] because α(z) in (3) is a
polynomial rather than a polynomial matrix.
Define the parameter matrix θ, parameter vector α, input information vector ϕ(t) and output information matrix ψ(t)

as

θT = [Q0,Q1, . . . ,Qn] ∈ Rm×(n+1)r ,

α =


α1
α2
α3
...
αn

 , ϕ(t) =


u(t)

u(t − 1)
u(t − 2)

...
u(t − n)

 ∈ R(n+1)r ,

ψ(t) = [y(t − 1), y(t − 2), . . . , y(t − n)] ∈ Rm×n.

Then Eq. (3) can be rewritten as [10,11]

y(t)+ ψ(t)α = θTϕ(t)+ v(t). (4)
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