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a b s t r a c t

By using Mawhin’s continuation theorem of coincidence degree theory, we establish
the existence of four positive periodic solutions for two species parasitical system with
harvesting terms. An example is given to illustrate the effectiveness of our results.
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1. Introduction

In recent years, the existence of periodic solutions in biological models has been widely studied. Models with harvesting
terms are often considered. Generally, the model with harvesting terms is described as follows:

ẋ = xf (x, y)− h, ẏ = yg(x, y)− k,

where x and y are functions of two species, respectively; h and k are harvesting terms standing for the harvests (see [1,2]).
Because of the effect of changing environment such as theweather, season, food and so on, the number of species population
periodically varies with the time. The rate of change usually is not a constant. Motivated by this, we consider the periodic
non-autonomous populationmodels. In this paper, we consider the following two species parasitical systemwith harvesting
terms:{

ẋ = x(t)(a1(t)− b1(t)x(t))− h1(t),
ẏ = y(t)(a2(t)− b2(t)y(t)+ c(t)x(t))− h2(t),

(1.1)

where, x(t) and y(t) denote the densities of the host and the parasites, respectively; ai(t), bi(t), c(t) and hi(t) (i = 1, 2) are
all positive continuous functions and denote the intrinsic growth rate, death rate, obtaining nutriment rate from the host,
harvesting rate, respectively. In model (1.1), the parasitical influence on its host is negligible. The parasitical phenomenon
described by model (1.1) is universal in the biological system or ecosystem. For example, holding within limits, the ascarid
does no harm to the people. Of course, the people live very well without the ascarid. On the existence of positive periodic
solutions to systems (1.1), few results are found in the literature. This motivates us to investigate the existence of a positive
periodic or multiple positive periodic solutions for system (1.1). In fact, it is more likely for some biological species to take
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on multiple periodic change regulations and have multiple local stable periodic phenomena. Therefore it is essential to
for us to investigate the existence of multiple positive periodic solutions for population models. Recently, the powerful
and effective approaches such as method of coincidence degree, Lyapunov functional method and differential inequality
techniques have been applied to study the existence of periodic or almost periodic solutions in periodic or almost periodic
systems. A number of good results have been obtained (see [3–16]). However, the existence of multiple periodic solutions
established by using coincidence degree theory for periodic systems are very scare (see [17]). So, in this paper, our purpose
is to study the existence of multiple positive periodic solutions to system (1.1). Therefore, we assume that all parameters in
system (1.1) are positive ω-periodic functions with ω > 0.
The organization of the rest of this paper is as follows. In Section 2, by employing the continuation theoremof coincidence

degree theory, we establish the existence of four positive periodic solutions of system (1.1). In Section 3, an example is given
to illustrate the effectiveness of our results.

2. Existence of four positive periodic solutions

For convenience, we introduce some concepts from the book by Gains and Mawhin.
Let X and Z be Banach spaces. A linear mapping L : Dom L ⊂ X → Z is called Fredholm if its kernel Ker L = {X ∈ Dom L :

Lx = 0} has finite dimension and its range Im L = {Lx : x ∈ Dom L} is closed and has finite codimension. The index of L
is defined by the integer dim Ker L − codim Im L. If L is a Fredholm mapping with index zero, then there exists continuous
projections P : X → X and Q : Z → Z such that Im P = Ker L and KerQ = Im L. Then L|Dom L∩Ker P : Im L ∩ Ker P → Im L is
bijective, and its inverse mapping is denoted by KP : Im L→ Dom L ∩ Ker P. Since Ker L is isomorphic to Im Q , there exists
a bijection J : Ker L→ Im Q . LetΩ be a bounded open subset of X and let N : X → Z be a continuous mapping. If QN(Ω)
is bounded and KP(I − Q )N : Ω → X is compact, then N is called L-compact onΩ , where I is the identity.
Let L be a Fredholm linear mapping with index zero and let N be a L-compact mapping on Ω. Define mapping F :

Dom L ∩Ω → Z by F = L− N. If Lx 6= Nx for all x ∈ Dom L ∩ ∂Ω, then by using P,Q , KP , J defined above, the coincidence
degree of F inΩ with respect to L is defined by

DegL(F ,Ω) = deg(I − P − (J
−1Q + KP(I − Q ))N,Ω, 0),

where deg(g,Γ , p) is the Leray–Schauder degree of g at p relative to Γ .
Then the Mawhin’s continuous theorem is given as follows:

Lemma 2.1 ([18]). Let Ω ⊂ X be an open bounded set and let N : X → Z be a continuous operator which is L-compact onΩ.
Assume
(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx 6= λNx;
(b) for each x ∈ ∂Ω ∩ L,QNx 6= 0;
(c) deg(JNQ ,Ω ∩ Ker L, 0) 6= 0.

Then Lx = Nx has at least one solution inΩ ∩ Dom L.

For the sake of convenience, we introduce some notations

f l = min
t∈[0,ω]

f (t), f M = max
t∈[0,ω]

f (t), f̄ =
1
ω

∫ ω

0
f (t) dt,

here f (t) is a continuous ω-periodic function.
Throughout this paper, we need the following assumptions.
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For simplicity, we also introduce five positive numbers as follows.
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Lemma 2.2. For the following equation

a1(t)− b1(t)eu∗(t) − h1(t)e−u∗(t) = 0, for all t ∈ R,

if assumption (H1) holds, then we have the following inequality

ln l−1 < u
−

∗
< ln

(
l+1 + l

−

1

2K

)
< u+

∗
< ln l+1 , for all t ∈ R,
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