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a b s t r a c t

Nonlinear multigrid methods such as the Full Approximation Scheme (FAS) and Newton-
multigrid (Newton-MG) are well established as fast solvers for nonlinear PDEs of elliptic
and parabolic type. In this paper we consider Newton-MG and FAS iterations applied
to second order differential operators with nonlinear diffusion coefficient. Under mild
assumptions arising in practical applications, an approximation (shown to be sharp) of
the execution time of the algorithms is derived, which demonstrates that Newton-MG
can be expected to be a faster iteration than a standard FAS iteration for a finite element
discretisation. Results are provided for elliptic and parabolic problems, demonstrating a
faster execution time as well as greater stability of the Newton-MG iteration. Results
are explained using current theory for the convergence of multigrid methods, giving a
qualitative insight into how the nonlinear multigrid methods can be expected to perform
in practice.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear multigrid iterations such as the Full Approximation Scheme (FAS) [1] and Newton-Multigrid (Newton-MG)
[2,3] methods have been widely used to solve elliptic and parabolic nonlinear problems on large scales (cf. [4–9] amongst
others). There exists very little convergence theory for the nonlinear methods (e.g. [10–13]) and only limited comparison as
to whichmethod should be preferred in practice [14–18], where the comparisons are limited to specific applications. In this
paper we present a more general framework for comparing the relative efficiency of the Newton-MG and FAS methods for
a broad class of nonlinear problems. This requires a detailed discussion of the efficient implementation of these schemes,
followed by a theoretical assessment of their running times in a finite element setting for a general second order nonlinear
operator. The comparison is based upon a detailed analysis of their costs per cycle, followed by a theoretical discussion of
their convergence properties and how this theorymay be used when comparing the techniques. As there exists no algebraic
variant of FAS multigrid, the geometric algorithms are compared.

The remainder of the paper is structured as follows. In Section 2 we briefly present the linear and nonlinear multigrid
iterations, followed by a detailed discussion of the theoretical running time of Newton-MG and FAS in Section 3. Section 4
describes and applies the relevant convergence theory for linear and nonlinear multigrid iterations. In Section 5 model
problems are introduced, which are used to produce results in Section 6, to demonstrate the applicability of the theory from
Sections 3 and 4. Conclusions are given in Section 7, which summarise the reasons why a Newton-MG iteration should be
preferred over an FAS iteration when using a finite element discretisation.
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2. Background

In this section we introduce the basic concepts and notation required for the definition of both linear and nonlinear ge-
ometric multigrid algorithms. A more detailed introduction can be found in [2,11,3]. The problem to be solved is presented
as an operator equation. Once an operator is discretised, and an appropriate basis for a discrete subspace has been chosen,
the discrete operator equation may be considered an algebraic system of equations. In the following we move between
considering operator equations and the corresponding algebraic systems of equations, as appropriate.

2.1. Linear multigrid algorithms

We wish to solve the linear operator equation given by

Au(x) = f (x), x ∈ Ω (2.1)

where the domain Ω ∈ Rd has boundary ∂Ω , and A : V → V for some vector space V . From this point on we omit the
explicit dependence on x ∈ Rd. It is assumed that there is a unique u∗

∈ V satisfying Eq. (2.1). We are interested in the
approximate solution of (2.1) based upon discretisations using a sequence of finite-dimensional grids

Ω1 ⊂ Ω2 ⊂ · · · ⊂ ΩJ , (2.2)

which are sets of connected points inΩ . We also consider the sequence of finite-dimensional function spaces

V1 ⊂ V2 ⊂ · · · ⊂ VJ ⊂ V, (2.3)

where each Vl, l = 1, . . . , J is defined on gridΩl. Given (2.3), we consider the discretised system of equations

Alul = fl (2.4)

where Al : Vl → Vl is the projection of the continuous operator A onto the finite-dimensional space Vl. We assume there
are unique u∗

l ∈ Vl, l = 1, . . . , J that satisfy (2.4). For the purposes of this paper Vl, l = 1, . . . , J is the standard piecewise
linear finite element function space defined on gridΩl.

2.1.1. Linear multigrid as a solver
In this sectionwe describe the linear geometricmultigridmethod and introduce some notation. A discussion of necessary

conditions for convergence of geometric multigrid is presented in Section 4.
We introduce operators

Rl : Vl → Vl−1, l = 2, . . . , J
Pl : Vl−1 → Vl, l = 2, . . . , J,

(2.5)

which are restriction and prolongation operators, respectively, that allow the transfer of functions between different
subspaces. Since the exact solution to (2.4) is u∗

l ∈ Vl, the error el and defect rl in approximation ul, defined by

el = u∗

l − ul, rl = fl − Alul,

satisfy the operator equation

Alel = rl. (2.6)

We assume there exist operators Sl : Vl → Vl, l = 2, . . . , J , called smoothing operators, that have the property that they are
effective at removing high frequency components from the error [3,2]. A correction term is calculated on a coarser grid in
the coarse grid correction step. We fix a number ν of smooths to perform before (pre-smoothing) and after (post-smoothing)
a coarse grid correction step. In general the number of pre- and post-smooths may differ, and one of the smoothing steps
may be left out entirely [11,3,2].

Consider that we wish to solve (2.4) on grid Ωl, l ≠ 1, for the exact discrete solution u∗

l ∈ Vl. A single step of the
geometric multigrid algorithm is then outlined in Algorithm 2.1, where u(j)l ∈ Vl represents the approximation to the so-
lution u∗

l after j iterations of linear multigrid have been performed. This iteration can be performed until some appropriate
convergence/failure criteria are met. On the coarsest grid level the exact inverse is very inexpensive to compute, provided
that |Ω1| is small, and the running time of the algorithm is O(n) for particular choices of A (cf. [3,2]). There is a closed form
representation of the linear multigrid V-cycle operator, which for the rest of this paper is denoted Ml : Vl → Vl. The exact
representation can be found in [3]. A multigrid operator should possess the smoothing and coarse grid correction proper-
ties [11]. That is, the smoother should remove high frequency components from the error, and the coarse grid correction
should give a good approximation to the fine grid error after the high frequency components have been removed.

2.1.2. Multigrid preconditioned linear iterations
Multigrid iterations are frequently used as a preconditioner for a different iterative method. For a more thorough dis-

cussion of such methods see [19]. The discrete problem (2.4) can be solved iteratively using a right-preconditioned Krylov
subspace method, such as conjugate gradients (CG) or GMRES [19]. As the preconditioner we use a single multigrid V-cycle
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