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a b s t r a c t

We present and analyze a first order least squares method for convection dominated
diffusion problems, which provides robust L2 a priori error estimate for the scalar variable
even if the given data f ∈ L2(Ω). The novel theoretical approach is to rewrite themethod in
the framework of discontinuous Petrov–Galerkin (DPG) method, and then show numerical
stability by using a key equation discovered by Gopalakrishnan and Qiu (2014). This new
approach gives an alternative way to do numerical analysis for least squares methods for a
large class of differential equations. We also show that the condition number of the global
matrix is independent of the diffusion coefficient. A key feature of the method is that there
is no stabilization parameter chosen empirically. In addition, Dirichlet boundary condition
is weakly imposed. Numerical experiments verify our theoretical results and, in particular,
show our way of weakly imposing Dirichlet boundary condition is essential to the design
of least squaresmethods—numerical solutions on subdomains away from interior layers or
boundary layers have remarkable accuracy even on coarsemeshes, which are unstructured
quasi-uniform.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present a robust a priori analysis of first order least squares method with weakly imposed boundary
condition for the following convection dominated diffusion equation

−ϵ∆u + β · ∇u + cu = f inΩ , (1.1a)
u = g on ∂Ω , (1.1b)

whereΩ ∈ Rd (d = 2, 3) is a polyhedral domain, 0 < ϵ ≤ 1, c a function in L∞(Ω), f a function in L2(Ω) and g a function
in H1/2(∂Ω). Here, the variable flux β satisfies the following assumption:

β · ∇ψ ≥ b0 > 0 inΩ, for some function ψ ∈ W 1,∞(Ω), (1.2a)
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c −
1
2
∇ · β ≥ 0 inΩ. (1.2b)

According to [1], the assumption (1.2a) is satisfied if

β has no closed curves and |β(x)| ≠ 0 for all x ∈ Ω.

Least squares methods have been frequently used to simulate solutions of partial differential equations arising from
fluid dynamics and continuummechanics. We refer to [2,3] for comprehensive summary. It is well known that least squares
methods have the following desirable features: it leads to a minimization problem; its numerical stability is not sensitive to
the choice of finite element space or meshes; the resulting global stiffness matrices are symmetric and positive definite; a
practical a posteriori error estimator can be given without any additional cost, and so on (see [4–16]).

Unfortunately, primitive least squares methods for convection dominated diffusion problems (1.1) have the following
drawbacks. Firstly, if the term c −

1
2∇ · β is not uniformly bounded from below by a positive constant, L2 a priori error

estimate of primitive least squares methods will deteriorate as the diffusion coefficient ϵ goes to zero, even when the exact
solution has no interior layers or boundary layers (see error estimates in [17–19]). Secondly, primitive least squaresmethods
show a very poor performance for convection diffusion problem (1.1) with a sufficiently small diffusion coefficient, because
large spurious oscillations are observed (see numerical experiments in [18]). We notice that in [18], residual-free bubble
strategy is used to address the second drawback. But, the least squares method in [18] needs to compute basis functions
element-wise, which is relatively not easy to implement.

It is well known that streamline diffusionmethod [20], residual free bubblemethods [21–23], and DGmethods [1,24–27]
do not suffer from the above two drawbacks of primitive least squares methods. We refer to [28,29] as comprehensive sum-
maries of numerical methods suitable for convection dominated diffusion problems. We would like to emphasize that none
of these numerical methods (streamline diffusion method, residual free bubble methods, DG methods) result in symmetric
global stiffness matrices. Hence from the point of view of solver design, the least squares method is more attractive than the
other methods mentioned before and many works have been contributed to this subject (e.g. [9,30]). Moreover, we derive
that the condition number of linear system from our first order least squares method is at mostO(h−2), where h is themesh
size. In particular, the condition number is independent of the diffusion coefficient. This property is important for designing
efficient solver, e.g., multilevel method, for the first order least squares approximation of convection dominated diffusion
equation.

In this paper, we propose and analyze our first order least squares method to address these two drawbacks for primitive
least squares methods. In fact, it is difficult to provide robust L2 error estimate by the traditional approach of numerical
analysis for least squaresmethods in [2]. So, it is necessary to look for an alternative approach.We notice that aweighted test
function was used in [31] to obtain the L2 stability of the original DG method [32] for the transportation reaction equation,
and this idea was generalized to convection–diffusion–reaction equation in [1] using the IP–DG methods. In this paper, we
rewrite our method in the framework of discontinuous Petrov–Galerkin (DPG) method, then show numerical stability by
using a key equation discovered in [33]. The advantage of this new approach is that the weight function in [1] is shown to
stay in some ‘‘equivalent’’ test function space (see (3.7) in Section 3) such that numerical stability can be obtained without
using any projection as in [1]. This approach is novel and useful to numerical analysis of least squares methods for a large
class of differential equations. This new approach of numerical analysis is also different from traditional ones used for DPG
method in [34–38]. We show that, roughly speaking, using polynomials of degree k + 1 ≥ 1,

∥uh − u∥L2(Ω) + ϵ1/2∥∇(u − uh)∥L2(Ω) ≤ Chk+1
∥u∥Hk+2(Ω); (1.3)

if ϵ1/2 ≤ hK for any K ∈ Th,

∥u − uh∥L2(Ω) + ϵ1/2∥∇(u − uh)∥L2(Ω) + ∥β · ∇(u − uh)∥L2(Ω) ≤ Chk+1
∥u∥Hk+2(Ω).

Here, the constant C is independent of ϵ. Thus, we can conclude that a priori error estimate in (1.3) is robust with respect to
the diffusion coefficient ϵ, which addresses the first draw back.We also want to emphasize that the convergence result (1.3)
shows ourmethod has L2 convergence rate even if f ∈ L2(Ω), whichmeans ourmethod does not have excessive smoothness
requirements than other methods. In order to overcome the second drawback, we impose Dirichlet boundary condition in a
weak way, such that the error along the boundary layers will not propagate into the whole domain. We show the advantage
of imposing boundary conditionweakly by numerical experiments.We notice that our way of imposing boundary condition
is similar to the weak imposition of Dirichlet boundary condition in [39–42] (in [41], boundary condition is weakly imposed
for least squares methods for linear hyperbolic PDEs), which belongs to Nitsche’s method in [43]. However, we do not have
to choose any penalty terms empirically while [40] needs. We would like to emphasize that weakly imposing boundary
condition is essential to least squares methods while it is incrementally helpful to streamline diffusion method and DG
methods (see numerical experiments in [40]). If boundary condition is imposed strongly, the numerical solutions produced
by streamline diffusionmethod and DGmethodsmay have artificial oscillation along boundary layers, while the accuracy in
subdomains away from boundary layers is still remarkable. However, according to our numerical experiments, if we impose
boundary condition strongly, then numerical solution of least squaresmethodswill be polluted on almost thewhole domain
by boundary layers. We have tried to add several stabilization terms, which have been utilized by streamline diffusion
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